Community Detection in Networks by Using Multiobjective Membrane Algorithm | SpringerLink
Skip to main content

Community Detection in Networks by Using Multiobjective Membrane Algorithm

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10637))

Included in the following conference series:

  • 4272 Accesses

Abstract

This paper introduces a multi-objective optimization idea to solve the community detection. First, the problem of community detection is transformed into complex multi-objective optimization problem. Second, an evolutionary multi-objective membrane algorithm is proposed for discovering community structure. Finally, the proposed algorithm is conducted on the synthetic networks, and the experimental results demonstrate that our algorithm is effective and promising, and it can detect communities more accurately compared with PSO and GSA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gong, M., Fu, B., Jiao, L., Du, H.: Memetic algorithm for community detection in networks. Phys. Rev. E 84(5), 056101 (2011)

    Article  Google Scholar 

  2. Cai, Q., Ma, L., Gong, M., Tian, D.: A survey on network community detection based on evolutionary computation. Int. J. Bio-inspired Comput. 8(2), 84–98 (2016)

    Article  Google Scholar 

  3. Atay, Y., Koc, I., Babaoglu, I., Kodaz, H.: Community detection from biological and social networks: a comparative analysis of metaheuristic algorithms. Appl. Soft Comput. 50, 194–211 (2017)

    Article  Google Scholar 

  4. Pizzuti, C.: A multiobjective genetic algorithm to find communities in complex networks. IEEE Trans. Evol. Comput. 16(3), 418–430 (2012)

    Article  Google Scholar 

  5. Paun, G.: Computing with membranes. J. Comput. Syst. Sci. 61(1), 108–143 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  6. Paun, G., Rozenberg, G.: A guide to membrane computing. Theoret. Comput. Sci. 287(1), 73–100 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  7. Paun, G., Rozenberg, G., Salomaa, A.: The Oxford Handbook of Membrane Computing. Oxford University Press, Inc., Oxford (2010)

    Book  MATH  Google Scholar 

  8. Ciobanu, G., Paun, G., Paerez-Jimaenez, M.J.: Applications of Membrane Computing. Springer, Heidelberg (2006). doi:10.1007/3-540-29937-8

    Google Scholar 

  9. Cecilia, J.M., Garcia, J.M., Guerrero, G.D., Martinez-del Amor, M.A., Perez-Jimenez, M.J., Ujaldon, M.: The GPU on the simulation of cellular computing models. Soft. Comput. 16(2), 231–246 (2012)

    Article  Google Scholar 

  10. Pan, L., Martin-Vide, C.: Solving multidimensional 0–1 knapsack problem by P systems with input and active membranes. J. Parallel Distrib. Comput. 65(12), 1578–1584 (2005)

    Article  MATH  Google Scholar 

  11. Liu, C., Chen, D., Wan, F.: Multiobjective learning algorithm based on membrane systems for optimizing the parameters of extreme learning machine. Optik - Int. J. Light Electron Opt. 127(4), 1909–1917 (2015)

    Article  Google Scholar 

  12. Singh, G., Deep, K., Nagar, A.K.: Cell-like P-systems based on rules of particle swarm optimization. Appl. Math. Comput. 246, 546–560 (2014)

    MATH  MathSciNet  Google Scholar 

  13. Nishida, T.Y.: An approximate algorithm for NP-complete optimization problems exploiting P systems. In: Proceedings of Brainstorming Workshop on Uncertainty in Membrane Computing, pp. 185–192 (2004)

    Google Scholar 

  14. Zhang, Y., Huang, L.: A variant of P systems for optimization. Neurocomputing 72(4), 1355–1360 (2009)

    Article  Google Scholar 

  15. Zhang, G., Gheorghe, M., Wu, C.: A quantum-inspired evolutionary algorithm based on P systems for knapsack problem. Fundam. Inform. 87(1), 93–116 (2008)

    MATH  MathSciNet  Google Scholar 

  16. Huang, L., Suh, I.H., Abraham, A.: Dynamic multi-objective optimization based on membrane computing for control of time-varying unstable plants. Inf. Sci. 181(11), 2370–2391 (2011)

    Article  Google Scholar 

  17. Buiu, C., Vasile, C., Arsene, O.: Development of membrane controllers for mobile robots. Inf. Sci. 187, 33–51 (2012)

    Article  Google Scholar 

  18. Liu, C., Han, M., Wang, X.: A multi-objective evolutionary algorithm based on membrane systems. In: 2011 Fourth International Workshop on Advanced Computational Intelligence (IWACI), pp. 103–109. IEEE (2011)

    Google Scholar 

  19. Zhang, G., Rong, H., Neri, F., Perez-Jimenez, M.J.: An optimization spiking neural P system for approximately solving combinatorial optimization problems. Int. J. Neural Syst. 24(05), 1440006 (2014)

    Article  Google Scholar 

  20. Liu, C., Fan, L.: Evolutionary algorithm based on dynamical structure of membrane systems in uncertain environments. Int. J. Biomath. 9(02), 1650017 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  21. Xiao, J., He, J.J., Chen, P., Niu, Y.Y.: An improved dynamic membrane evolutionary algorithm for constrained engineering design problems. Natural Comput. 1–11 (2016)

    Google Scholar 

  22. Liu, C., Fan, L.: A hybrid evolutionary algorithm based on tissue membrane systems and CMA-ES for solving numerical optimization problems. Knowl.-Based Syst. 105, 38–47 (2016)

    Article  Google Scholar 

  23. Rashedi, E., Nezamabadi-Pour, H., Saryazdi, S.: GSA: a gravitational search algorithm. Inf. Sci. 179(13), 2232–2248 (2009)

    Article  MATH  Google Scholar 

  24. Liang, J.J., Qin, A.K., Suganthan, P.N., Baskar, S.: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans. Evol. Comput. 10(3), 281–295 (2006)

    Article  Google Scholar 

  25. Girvan, M., Newman, M.E.: Community structure in social and biological networks. Proc. Nat. Acad. Sci. 99(12), 7821–7826 (2002)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This project was supported by Shenyang Science and Technology Program (Grant No. 17-175-3-00).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuang Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Liu, C., Fan, L., Li, L., Liu, Z., Dai, X., Gao, W. (2017). Community Detection in Networks by Using Multiobjective Membrane Algorithm. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, ES. (eds) Neural Information Processing. ICONIP 2017. Lecture Notes in Computer Science(), vol 10637. Springer, Cham. https://doi.org/10.1007/978-3-319-70093-9_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70093-9_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70092-2

  • Online ISBN: 978-3-319-70093-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics