Abstract
Melanoma is a dangerous type of skin cancers. It is alarming to see the increase of this noxious disease in modern societies, however, it can be cured by surgical excision if it is detected early. In this paper, a swarm-based clustering technique for detecting melanoma is developed. Meaningful colour features from images are extracted, and a new objective function is introduced by applying an efficient and fast linear transformation to detect Melanoma. Specifically, the proposed technique consists of three main phases. The first phase is a pre-processing stage to organize data into proper attributes, while the subsequent two phases comprise iterative swarm optimisation procedures. The iterative swarm optimisation procedures involve a linear transformation to convert the existing colour components into a new colour space, formulation of the Kmedoids objective function, and error minimisation of the particle swarm optimisation (PSO) solutions. The Otsu threshold technique is utilised to provide binary images. The proposed technique is efficient and effective due to its linearity and simplicity.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
Dermatology Information System published online at: http://www.dermis.net/doia/, 2012, Accessed: 08 Nov 2012.
References
Babaie, M., Kalra, S., Sriram, A., Mitcheltree, C., Zhu, S., Khatami, A., Rahnamayan, S., Tizhoosh, H.R.: Classification and retrieval of digital pathology scans: a new dataset. arXiv preprint arXiv:1705.07522 (2017)
Cascinelli, N., Ferrario, M., Bufalino, R., Zurrida, S., Galimberti, V., Mascheroni, L., Bartoli, C., Clemente, C.: Results obtained by using a computerized image analysis system designed as an aid to diagnosis of cutaneous melanoma. Melanoma Res. 2(3), 163–170 (1992)
Celebi, M.E., Aslandogan, Y.A., Bergstresser, P.R.: Unsupervised border detection of skin lesion images. In: International Conference on Information Technology: Coding and Computing, ITCC 2005, vol. 2, pp. 123–128. IEEE (2005)
Crisp, D.J., Tao, T.C.: Fast region merging algorithms for image segmentation. In: The 5th Asian Conference on Computer Vision (ACCV2002), Melbourne, Australia, pp. 23–25 (2002)
Deng, Y., Manjunath, B.: Unsupervised segmentation of color-texture regions in images and video. IEEE Trans. Pattern Anal. Mach. Intell. 23(8), 800–810 (2001)
Faziloglu, Y., Stanley, R.J., Moss, R.H., Van Stoecker, W., McLean, R.P.: Colour histogram analysis for melanoma discrimination in clinical images. Skin Res. Technol. 9(2), 147–156 (2003)
Ganster, H., Pinz, A., Röhrer, R., Wildling, E., Binder, M., Kittler, H.: Automated melanoma recognition. IEEE Trans. Med. Imaging 20(3), 233–239 (2001)
Kaufman, L., Rousseeuw, P.J.: Partitioning Around Medoids (Program PAM). Finding Groups in Data: an Introduction to Cluster Analysis, pp. 68–125 (1990)
Khatami, A., Babaie, M., Khosravi, A., Tizhoosh, H., Salaken, S.M., Nahavandi, S.: A deep-structural medical image classification for a radon-based image retrieval. In: 2017 IEEE 30th Canadian Conference on Electrical and Computer Engineering (CCECE), pp. 1–4. IEEE (2017)
Khatami, A., Khosravi, A., Lim, C.P., Nahavandi, S.: A wavelet deep belief network-based classifier for medical images. In: Hirose, A., Ozawa, S., Doya, K., Ikeda, K., Lee, M., Liu, D. (eds.) ICONIP 2016. LNCS, vol. 9949, pp. 467–474. Springer, Cham (2016). doi:10.1007/978-3-319-46675-0_51
Khatami, A., Khosravi, A., Nguyen, T., Lim, C.P., Nahavandi, S.: Medical image analysis using wavelet transform and deep belief networks. Expert Syst. Appl. (2017)
Khatami, A., Mirghasemi, S., Khosravi, A., Lim, C.P., Nahavandi, S.: A new pso-based approach to fire flame detection using k-medoids clustering. Expert Syst. Appl. 68, 69–80 (2017)
Khatami, A., Mirghasemi, S., Khosravi, A., Nahavandi, S.: An efficient hybrid algorithm for fire flame detection. In: 2015 International Joint Conference on Neural Networks (IJCNN), pp. 1–6. IEEE (2015)
Khatami, A., Mirghasemi, S., Khosravi, A., Nahavandi, S.: A new color space based on k-medoids clustering for fire detection. In: 2015 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 2755–2760. IEEE (2015)
Maglogiannis, I., Zafiropoulos, E., Kyranoudis, C.: Intelligent segmentation and classification of pigmented skin lesions in dermatological images. In: Antoniou, G., Potamias, G., Spyropoulos, C., Plexousakis, D. (eds.) SETN 2006. LNCS, vol. 3955, pp. 214–223. Springer, Heidelberg (2006). doi:10.1007/11752912_23
Siascope, T., Consensus, E., Expert, M., Solarscan, T., Ogorzaek, M., Nowak, L., Surwka, G., Alekseenko, A.: Jagiellonian University Faculty of Physics, Astronomy and Applied Computer Science Jagiellonian University Dermatology Clinic, Collegium Medicum Poland (2005)
Yang, J., Fu, Z., Tan, T., Hu, W.: Skin color detection using multiple cues. In: Proceedings of the 17th International Conference on Pattern Recognition, ICPR 2004, pp. 632–635. IEEE (2004)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Khatami, A., Mirghasemi, S., Khosravi, A., Lim, C.P., Asadi, H., Nahavandi, S. (2017). A Swarm Optimization-Based Kmedoids Clustering Technique for Extracting Melanoma Cancer Features. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, ES. (eds) Neural Information Processing. ICONIP 2017. Lecture Notes in Computer Science(), vol 10637. Springer, Cham. https://doi.org/10.1007/978-3-319-70093-9_32
Download citation
DOI: https://doi.org/10.1007/978-3-319-70093-9_32
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-70092-2
Online ISBN: 978-3-319-70093-9
eBook Packages: Computer ScienceComputer Science (R0)