A Swarm Optimization-Based Kmedoids Clustering Technique for Extracting Melanoma Cancer Features | SpringerLink
Skip to main content

A Swarm Optimization-Based Kmedoids Clustering Technique for Extracting Melanoma Cancer Features

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10637))

Included in the following conference series:

  • 4274 Accesses

Abstract

Melanoma is a dangerous type of skin cancers. It is alarming to see the increase of this noxious disease in modern societies, however, it can be cured by surgical excision if it is detected early. In this paper, a swarm-based clustering technique for detecting melanoma is developed. Meaningful colour features from images are extracted, and a new objective function is introduced by applying an efficient and fast linear transformation to detect Melanoma. Specifically, the proposed technique consists of three main phases. The first phase is a pre-processing stage to organize data into proper attributes, while the subsequent two phases comprise iterative swarm optimisation procedures. The iterative swarm optimisation procedures involve a linear transformation to convert the existing colour components into a new colour space, formulation of the Kmedoids objective function, and error minimisation of the particle swarm optimisation (PSO) solutions. The Otsu threshold technique is utilised to provide binary images. The proposed technique is efficient and effective due to its linearity and simplicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.mayoclinic.org/diseases-conditions/melanoma/basics/definition/con-20026009.

  2. 2.

    Dermatology Information System published online at: http://www.dermis.net/doia/, 2012, Accessed: 08 Nov 2012.

References

  1. Babaie, M., Kalra, S., Sriram, A., Mitcheltree, C., Zhu, S., Khatami, A., Rahnamayan, S., Tizhoosh, H.R.: Classification and retrieval of digital pathology scans: a new dataset. arXiv preprint arXiv:1705.07522 (2017)

  2. Cascinelli, N., Ferrario, M., Bufalino, R., Zurrida, S., Galimberti, V., Mascheroni, L., Bartoli, C., Clemente, C.: Results obtained by using a computerized image analysis system designed as an aid to diagnosis of cutaneous melanoma. Melanoma Res. 2(3), 163–170 (1992)

    Article  Google Scholar 

  3. Celebi, M.E., Aslandogan, Y.A., Bergstresser, P.R.: Unsupervised border detection of skin lesion images. In: International Conference on Information Technology: Coding and Computing, ITCC 2005, vol. 2, pp. 123–128. IEEE (2005)

    Google Scholar 

  4. Crisp, D.J., Tao, T.C.: Fast region merging algorithms for image segmentation. In: The 5th Asian Conference on Computer Vision (ACCV2002), Melbourne, Australia, pp. 23–25 (2002)

    Google Scholar 

  5. Deng, Y., Manjunath, B.: Unsupervised segmentation of color-texture regions in images and video. IEEE Trans. Pattern Anal. Mach. Intell. 23(8), 800–810 (2001)

    Article  Google Scholar 

  6. Faziloglu, Y., Stanley, R.J., Moss, R.H., Van Stoecker, W., McLean, R.P.: Colour histogram analysis for melanoma discrimination in clinical images. Skin Res. Technol. 9(2), 147–156 (2003)

    Article  Google Scholar 

  7. Ganster, H., Pinz, A., Röhrer, R., Wildling, E., Binder, M., Kittler, H.: Automated melanoma recognition. IEEE Trans. Med. Imaging 20(3), 233–239 (2001)

    Article  Google Scholar 

  8. Kaufman, L., Rousseeuw, P.J.: Partitioning Around Medoids (Program PAM). Finding Groups in Data: an Introduction to Cluster Analysis, pp. 68–125 (1990)

    Google Scholar 

  9. Khatami, A., Babaie, M., Khosravi, A., Tizhoosh, H., Salaken, S.M., Nahavandi, S.: A deep-structural medical image classification for a radon-based image retrieval. In: 2017 IEEE 30th Canadian Conference on Electrical and Computer Engineering (CCECE), pp. 1–4. IEEE (2017)

    Google Scholar 

  10. Khatami, A., Khosravi, A., Lim, C.P., Nahavandi, S.: A wavelet deep belief network-based classifier for medical images. In: Hirose, A., Ozawa, S., Doya, K., Ikeda, K., Lee, M., Liu, D. (eds.) ICONIP 2016. LNCS, vol. 9949, pp. 467–474. Springer, Cham (2016). doi:10.1007/978-3-319-46675-0_51

    Chapter  Google Scholar 

  11. Khatami, A., Khosravi, A., Nguyen, T., Lim, C.P., Nahavandi, S.: Medical image analysis using wavelet transform and deep belief networks. Expert Syst. Appl. (2017)

    Google Scholar 

  12. Khatami, A., Mirghasemi, S., Khosravi, A., Lim, C.P., Nahavandi, S.: A new pso-based approach to fire flame detection using k-medoids clustering. Expert Syst. Appl. 68, 69–80 (2017)

    Article  Google Scholar 

  13. Khatami, A., Mirghasemi, S., Khosravi, A., Nahavandi, S.: An efficient hybrid algorithm for fire flame detection. In: 2015 International Joint Conference on Neural Networks (IJCNN), pp. 1–6. IEEE (2015)

    Google Scholar 

  14. Khatami, A., Mirghasemi, S., Khosravi, A., Nahavandi, S.: A new color space based on k-medoids clustering for fire detection. In: 2015 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 2755–2760. IEEE (2015)

    Google Scholar 

  15. Maglogiannis, I., Zafiropoulos, E., Kyranoudis, C.: Intelligent segmentation and classification of pigmented skin lesions in dermatological images. In: Antoniou, G., Potamias, G., Spyropoulos, C., Plexousakis, D. (eds.) SETN 2006. LNCS, vol. 3955, pp. 214–223. Springer, Heidelberg (2006). doi:10.1007/11752912_23

    Chapter  Google Scholar 

  16. Siascope, T., Consensus, E., Expert, M., Solarscan, T., Ogorzaek, M., Nowak, L., Surwka, G., Alekseenko, A.: Jagiellonian University Faculty of Physics, Astronomy and Applied Computer Science Jagiellonian University Dermatology Clinic, Collegium Medicum Poland (2005)

    Google Scholar 

  17. Yang, J., Fu, Z., Tan, T., Hu, W.: Skin color detection using multiple cues. In: Proceedings of the 17th International Conference on Pattern Recognition, ICPR 2004, pp. 632–635. IEEE (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amin Khatami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Khatami, A., Mirghasemi, S., Khosravi, A., Lim, C.P., Asadi, H., Nahavandi, S. (2017). A Swarm Optimization-Based Kmedoids Clustering Technique for Extracting Melanoma Cancer Features. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, ES. (eds) Neural Information Processing. ICONIP 2017. Lecture Notes in Computer Science(), vol 10637. Springer, Cham. https://doi.org/10.1007/978-3-319-70093-9_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70093-9_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70092-2

  • Online ISBN: 978-3-319-70093-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics