Using Hidden Markov Model to Predict Human Actions with Swarm Intelligence | SpringerLink
Skip to main content

Using Hidden Markov Model to Predict Human Actions with Swarm Intelligence

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10637))

Included in the following conference series:

Abstract

This paper proposed a novel algorithm which named Randomized Particle Swarm Optimization (RPSO) to optimize HMM for human activity prediction. The experiments designed in this paper are the classification of human activity using two data sets. The first testing data is from the TUM Kitchen Data Set and the other is the Human Activity Recognition using the Smartphone Data Set from UCI Machine Learning Repository. Based on the comparison of the accuracies for the conventional HMM and optimized HMM, a conclusion can be drawn that the proposed RPSO can help HMM to achieve higher accuracy for human action recognition. Our results show that RPSO-HMM can improve 15% accuracy in human activity recognition and prediction when compared to the traditional HMM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rabiner, L.: A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE 77(2), 257–286 (1989)

    Article  Google Scholar 

  2. Hu, J., Brown, M., Turin, W.: HMM based online handwriting recognition. IEEE Trans. Pattern Anal. Mach. Intell. 18(10), 1039–1045 (1996)

    Article  Google Scholar 

  3. Juang, B., Rabiner, L.: Hidden Markov models for speech recognition. Technometrics 33(3), 251–272 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  4. Singh, B., Kapur, N., Kaur, P.: Speech recognition with hidden Markov model a review. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 2(3) (2012)

    Google Scholar 

  5. Shi, Y.: Particle swarm optimization: development, applications and resources. In: 2001 Congress on Evolutionary Computation, Seoul, South Korea (2001)

    Google Scholar 

  6. Ramussen, T., Krink, T.: Improved hidden Markov model training for multiple sequence alignment by a particle swarm optimization - evolutionary algorithm hybrid. Biosystems 72(1), 5–17 (2003)

    Article  Google Scholar 

  7. Xue, L., Yin, J., Ji, Z., Jiang, L.: A particle swarm optimization for hidden Markov model training. In: 2006 8th International Conference on Signal Processing, Beijing, China (2006)

    Google Scholar 

  8. Aupetit, S., Monmarche, N., Slimane, M.: Hidden Markov models training by a particle swarm optimization algorithm. J. Math. Model. Algorithms 6(2), 175–193 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  9. Sun, J., Wu, X., Fang, W., Ding, Y., Long, H., Xu, W.: Multiple sequence alignment using the hidden Markov model trained by an improved quantum-behaved particles swarm optimization. Inf. Sci. 182(1), 93–114 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  10. Rabiner, L., Juang, B.: An introduction to hidden Markov models. IEEE ASSP Mag. 3(1), 4–16 (1986)

    Article  Google Scholar 

  11. Kohlschein, C.: An introduction to hidden Markov models. In: Probability and Randomization in Computer Science Seminar in Winter Semester, vol. 2007 (2006)

    Google Scholar 

  12. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: IEEE International Conference on Neural Networks, Perth, Australia, vol. IV, pp. 1942–1948 (1995)

    Google Scholar 

  13. Poli, R., Kennedy, J., Blackwell, T.: Particle swarm optimization. Swarm Intell. 1(1), 33–57 (2007)

    Article  Google Scholar 

  14. Bae, C., Yeh, W.C., Wahid, Y.Y., Chung, Y.Y., Liu, Y.: A new simplified swarm optimization (SSO) using exchange local search scheme. Int. J. Innov. Comput. Inf. Control 8(6), 4391–4406 (2012)

    Google Scholar 

  15. Kang, K., Bae, C., Moon, J., Park, J., Chung, Y.Y., Sha, F., Zhao, X.: Invariant-feature based object tracking using discrete dynamic swarm optimization. ETRI J. 39(2), 151–162 (2017)

    Article  Google Scholar 

  16. Tenorth, M., Bandouch, J., Beetz, M.: The TUM kitchen data set for everyday manipulation activities for motion tracking and action recognition. In: IEEE 12th International Conference on Computer Vision Workshops (ICCV Workshops), Kyoto, Japan (2009)

    Google Scholar 

  17. Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: ESANN (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhicheng Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Lu, Z., Chung, Y.Y., Yeung, H.W.F., Zandavi, S.M., Zhi, W., Yeh, WC. (2017). Using Hidden Markov Model to Predict Human Actions with Swarm Intelligence. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, ES. (eds) Neural Information Processing. ICONIP 2017. Lecture Notes in Computer Science(), vol 10637. Springer, Cham. https://doi.org/10.1007/978-3-319-70093-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70093-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70092-2

  • Online ISBN: 978-3-319-70093-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics