Using Word Mover’s Distance with Spatial Constraints for Measuring Similarity Between Mongolian Word Images | SpringerLink
Skip to main content

Using Word Mover’s Distance with Spatial Constraints for Measuring Similarity Between Mongolian Word Images

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10637))

Included in the following conference series:

Abstract

In the framework of bag-of-visual-words, visual words are independent each other, which results in discarding spatial relations and lacking semantic information of visual words. To capture semantic information of visual words, a deep learning procedure similar to word embedding technique is used for mapping visual words to embedding vectors in a semantic space. And then, word mover’s distance (WMD) is utilized to measure similarity between two word images, which calculates the minimum traveling distance from the visual embeddings of one word image to another one. Moreover, word images are partitioned into several sub-regions with equal sizes along rows and columns in advance. After that, WMDs can be computed from the corresponding sub-regions of the two word images, separately. Thus, the similarity between the two word images is the sum of these WMDs. Experimental results show that the proposed method outperforms various baseline and state-of-the-art methods, including spatial pyramid matching, latent Dirichlet allocation, average visual word embeddings and the original word mover’s distance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rath, T.M., Manmatha, R.: Word spotting for historical manuscripts. Int. J. Doc. Anal. Recogn. 9(2), 139–152 (2007)

    Article  Google Scholar 

  2. Rath, T.M., Manmatha, R.: Features for word spotting in historical manuscripts. In: Proceedings of ICDAR 2003, pp. 218–222. IEEE Press, New York (2003)

    Google Scholar 

  3. Rath, T.M., Manmatha, R.: Word image matching using dynamic time warping. In: Proceedings of CVPR 2003, pp. 521–527. IEEE Press, New York (2003)

    Google Scholar 

  4. Shekhar, R., Jawahar, C.V.: Word image retrieval using bag of visual words. In: Proceedings of DAS 2012, pp. 297–301. IEEE Press, New York (2012)

    Google Scholar 

  5. Aldavert, D., Rusinol, M., Toledo, R., Llados, J.: A study of bag-of-visual-words representations for handwritten keyword spotting. Int. J. Doc. Anal. Recogn. 18(3), 223–234 (2015)

    Article  Google Scholar 

  6. Mikolov, T., Sutskever, I., Chen, K., Coorado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Proceedings of NIPS 2013, pp. 3111–3119. MIT Press, Massachusetts (2013)

    Google Scholar 

  7. Kusner, M.J., Sun, Y., Kolkin, N.I., Weinberger, K.Q.: From word embeddings to document distances. Proc. Mach. Learn. Res. 37, 957–966 (2015)

    Google Scholar 

  8. Fornes, A., Frinken, V., Fischer, A., Almazan, J., Jackson, G., Bunke, H.: A keyword spotting approach using blurred shape model-based descriptors. In: Proceedings of HIP 2011, pp. 83–89. ACM Press, New York (2011)

    Google Scholar 

  9. Aldavert, D., Rusinol, M., Toledo, R., Llados, J.: Integrating visual and textual cues for query-by-string word spotting. In: Proceedings of ICDAR 2013, pp. 511–515. IEEE Press, New York (2013)

    Google Scholar 

  10. Rothacker, L., Fink, G.A.: Segmentation-free query-by-string word spotting with bag-of-features HMMs. In: Proceedings of ICDAR 2015, pp. 661–665. IEEE Press, New York (2015)

    Google Scholar 

  11. Wei, H.X., Gao, G.L., Su, X.D.: A multiple instances approach to improving keyword spotting on historical Mongolian document images. In: Proceedings of ICDAR 2015, pp. 121–125. IEEE Press, New York (2015)

    Google Scholar 

  12. Wei, H.X., Zhang, H., Gao, G.L.: Representing word image using visual word embeddings and RNN for keyword spotting on historical document images. In: Proceedings of ICME 2017, pp. 1374–1379. IEEE Press, New York (2017)

    Google Scholar 

  13. Wei, H.X., Gao, G.L.: Visual language model for keyword spotting on historical Mongolian document images. In: Proceedings of CCDC 2017, pp. 1765–1770. IEEE Press, New York (2017)

    Google Scholar 

  14. Wei, H., Gao, G., Su, X.: LDA-based word image representation for keyword spotting on historical Mongolian documents. In: Hirose, A., Ozawa, S., Doya, K., Ikeda, K., Lee, M., Liu, D. (eds.) ICONIP 2016. LNCS, vol. 9950, pp. 432–441. Springer, Cham (2016). doi:10.1007/978-3-319-46681-1_52

    Chapter  Google Scholar 

  15. Zamani, H., Croft, W.B.: Embeddings-based query language models. In: Proceedings of ICTIR 2016, pp. 147–156. ACM Press, New York (2016)

    Google Scholar 

  16. Pennington, J., Socher, R., Manning, C.D.: GloVe: global vectors for word representation. In: Proceedings of EMNLP 2014, pp. 1532–1543. ACL Press, Stroudsburg (2014)

    Google Scholar 

  17. Nalisnick, E., Mitra, B., Craswell, N., Caruana, R.: Improving document ranking with dual word embeddings. In: Proceedings of WWW 2016, pp. 83–84. ACM Press, New York (2016)

    Google Scholar 

  18. Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: Proceedings of CVPR 2006, pp. 2169–2178. IEEE Press, New York (2006)

    Google Scholar 

Download references

Acknowledgement

This paper is supported by the National Natural Science Foundation of China under Grant 61463038.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongxi Wei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Wei, H., Zhang, H., Gao, G., Su, X. (2017). Using Word Mover’s Distance with Spatial Constraints for Measuring Similarity Between Mongolian Word Images. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, ES. (eds) Neural Information Processing. ICONIP 2017. Lecture Notes in Computer Science(), vol 10637. Springer, Cham. https://doi.org/10.1007/978-3-319-70093-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70093-9_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70092-2

  • Online ISBN: 978-3-319-70093-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics