Behavior Theory Enabled Gender Classification Method | SpringerLink
Skip to main content

Behavior Theory Enabled Gender Classification Method

(Research in Progress)

  • Conference paper
  • First Online:
Internetworked World (WEB 2016)

Part of the book series: Lecture Notes in Business Information Processing ((LNBIP,volume 296))

Included in the following conference series:

  • 928 Accesses

Abstract

While it is crucial for organizations to automatically identify the gender of participants in product discussion forums, they may have difficulties adopting existing gender classification methods because the associations between the linguistic features used in gender classification models and gender type usually varies with context. This paper proposes and validates a framework for the development of gender classification that uses a more “data-driven” approach. The framework constantly extracts content-specific features from the discussions and could automatically adjust the features selected to accommodate the contextual changes in order to achieve better classification accuracy. It does not require any manual effort for model adjustment, which makes it easier for organizations to adopt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Bamman, D., Eisenstein, J., Schnoebelen, T.: Gender in Twitter: styles, stances, and social networks. CoRR abs/1210.4567 (2012)

    Google Scholar 

  2. Mukherjee, A., Liu, B.: Improving gender classification of blog authors. In: Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing, pp. 207–217. Association for Computational Linguistics, Stroudsburg, PA, USA (2010)

    Google Scholar 

  3. Wei, X., Dong, P., Cui, G.: Automatic extraction of course ontology from chinese textbook. In: 2010 International Conference on Computational Intelligence and Software Engineering. IEEE (2010). doi:10.1109/CISE.2010.5677020

  4. Yang, J., Leskovec, J.: Patterns of temporal variation in online media. In: Proceedings of the Fourth ACM International Conference on Web Search and Data Mining, pp. 177–186. ACM, New York, NY, USA (2011). doi:10.1145/1935826.1935863

  5. Herring, S.C., Paolillo, J.C.: Gender and genre variation in weblogs. J. Sociolinguistics 10(4), 439–459 (2006). doi:10.1111/j.1467-9841.2006.00287.x

    Article  Google Scholar 

  6. Labov, W.: Principles of linguistic change, cognitive and cultural factors, vol. 3. John Wiley & Sons, Hoboken (2011)

    Google Scholar 

  7. Garbarino, E., Strahilevitz, M.: Gender differences in the perceived risk of buying online and the effects of receiving a site recommendation. J. Bus. Res. 57(7), 768–775 (2004). doi:10.1016/S0148-2963(02)00363-6

    Article  Google Scholar 

  8. Yang, C., Wu, C.C.: Gender differences in online shoppers’ decision-making styles. In: Ascenso, J., Vasiu, L., Belo, C., Saramago, M. (eds.) e-Business and Telecommunication Networks, pp. 108–115. Springer, Dordrecht (2006). doi:10.1007/1-4020-4761-4_6

    Chapter  Google Scholar 

  9. Doong, H., Wang, H.: Do males and females differ in how they perceive and elaborate on agent-based recommendations in Internet-based selling? Electron. Commer. Res. Appl. 10(5), 595–604 (2011). doi:10.1016/j.elerap.2010.12.005

    Article  Google Scholar 

  10. Savicki, V., Kelley, M.: Computer mediated communication: gender and group composition. CyberPsychol. Behav. 3(5), 817–826 (2004). doi:10.1089/10949310050191791

    Article  Google Scholar 

  11. Thomson, R., Murachver, T., Green, J.: Where is the gender in gendered language? Psychol. Sci. 12(2), 171–175 (2001). doi:10.1111/1467-9280.00329

    Article  Google Scholar 

  12. Mulac, A., Bradac, J.J., Gibbons, P.: Empirical support for the gender-as-culture hypothesis. Hum. Commun. Res. 27(1), 121–152 (2001). doi:10.1111/j.1468-2958.2001.tb00778.x

    Article  Google Scholar 

  13. Rao, D., Yarowsky, D., Shreevats, A., Gupta, M.: Classifying latent user attributes in Twitter. In: Proceedings of the 2nd international workshop on Search and mining user-generated contents, pp. 37–44. ACM, New York, NY, USA (2010). doi:10.1145/1871985.1871993

  14. Martindale, C., McKenzie, D.: On the utility of content analysis in author attribution: the Federalist. Comput. Hum. 29(4), 259–270 (1995). doi:10.1007/BF01830395

    Article  Google Scholar 

  15. Eckert, P., McConnell-Ginet, S.: Constructing meaning, constructing selves: snapshots of language, gender and class from Belten high. In: Hall, K., Bucholtz, M. (eds.) Gender Articulated: Language and the Socially Constructed Self, pp. 469–507. Routledge, London and New York (1995)

    Google Scholar 

  16. Burger, J.D., Henderson, J., Kim, G., Zarrella, G.: Discriminating gender on Twitter. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, pp. 1301–1309. Association for Computational Linguistics, Stroudsburg, PA, USA (2011)

    Google Scholar 

  17. ICTCLAS: ICTCLAS features. http://www.ictclas.org

  18. Bo, A., Peng, S., Xinming, T., Alimu, N.: Spatio-temporal visualization system of news events based on GIS. In: 2011 IEEE 3rd International Conference on Communication Software and Networks (ICCSN), pp. 448–451. IEEE (2011). doi:10.1109/ICCSN.2011.6014089

  19. Yang, Y., Pedersen, J.O.: A comparative study on feature selection in text categorization. In: Proceedings of the Fourteenth International Conference on Machine Learning, pp. 412–420. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (1997)

    Google Scholar 

  20. Liu, W., Zhu, Y., Li, C., Xiang, H., Wen, Z.: Research on building Chinese basic semantic lexicon. J. Comput. Appl. 29(10), 2875–2877 (2009)

    Google Scholar 

Download references

Acknowledgments

This work is partly supported by the National Natural Science Foundation of PRC (Nos. 71531013, 71490720, and 71401047).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing Wang , Xiangbin Yan or Bin Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, J., Yan, X., Zhu, B. (2017). Behavior Theory Enabled Gender Classification Method. In: Fan, M., Heikkilä, J., Li, H., Shaw, M., Zhang, H. (eds) Internetworked World. WEB 2016. Lecture Notes in Business Information Processing, vol 296. Springer, Cham. https://doi.org/10.1007/978-3-319-69644-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69644-7_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69643-0

  • Online ISBN: 978-3-319-69644-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics