ABAplus: Attack Reversal in Abstract and Structured Argumentation with Preferences | SpringerLink
Skip to main content

ABAplus: Attack Reversal in Abstract and Structured Argumentation with Preferences

  • Conference paper
  • First Online:
PRIMA 2017: Principles and Practice of Multi-Agent Systems (PRIMA 2017)

Abstract

We present ABAplus, a system that implements reasoning with the argumentation formalism ABA\(^+\). ABA\(^+\) is a structured argumentation formalism that extends Assumption-Based Argumentation (ABA) with preferences and accounts for preferences via attack reversal. ABA\(^+\) also admits as instance Preference-based Argumentation which accounts for preferences by reversing attacks in abstract argumentation (AA). ABAplus readily implements attack reversal in both AA and ABA-style structured argumentation. ABAplus affords computation, visualisation and comparison of extensions under five argumentation semantics. It is available both as a stand-alone system and as a web application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    As a preorder, \(\leqslant \) has to be reflexive, but for brevity purposes we often omit to specify the reflexive instances of any preorder.

  2. 2.

    Other ways of formalising such examples in ABA are possible; we chose a natural and simple representation. Generally, knowledge representation in argumentation (and other formalisms) may be a complex problem, discussion of which is beyond the scope of this paper.

  3. 3.

    Our notion of ‘weak contraposition’ bears no relationship with the notion by the same name used e.g. in [15], inspired by conditional entailment in Deontic Logic.

  4. 4.

    Unless specified otherwise, we omit \(\mathcal {L}\) and , and adopt the following conventions: unless \(\overline{\mathsf {x}}\) appears in either \(\mathcal {A}\) or \(\mathcal {R}\), it is different from the sentences appearing in \(\mathcal {A}\) or \(\mathcal {R}\); thus, \(\mathcal {L}\) consists of all the sentences appearing in \(\mathcal {R}\), \(\mathcal {A}\) and \(\{ \overline{\mathsf {a}}~:~\mathsf {a}\in \mathcal {A}\}\).

  5. 5.

    http://toast.arg-tech.org.

  6. 6.

    http://gorgiasb.tuc.gr/index.html.

  7. 7.

    http://lidia.cs.uns.edu.ar/delp_client.

  8. 8.

    http://carneades.fokus.fraunhofer.de/carneades.

  9. 9.

    http://www.dmi.unipg.it/conarg.

References

  1. Amgoud, L., Cayrol, C.: A reasoning model based on the production of acceptable arguments. Ann. Math. Artif. Intell. 34(1–3), 197–215 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Amgoud, L., Vesic, S.: Rich preference-based argumentation frameworks. Int. J. Approximate Reasoning 55(2), 585–606 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Besnard, P., García, A.J., Hunter, A., Modgil, S., Prakken, H., Simari, G.R., Toni, F.: Introduction to structured argumentation. Argum. Comput. 5(1), 1–4 (2014)

    Article  Google Scholar 

  4. Bistarelli, S., Rossi, F., Santini, F.: ConArg: a tool for classical and weighted argumentation. In: Baroni, P., Gordon, T., Scheffler, T., Stede, M. (eds.) Computational Models of Argument. Frontiers in Artificial Intelligence and Applications, vol. 287, pp. 463–464. IOS Press, Potsdam (2016)

    Google Scholar 

  5. Bistarelli, S., Santini, F.: A Common computational framework for semiring-based argumentation system. In: Coelho, H., Studer, R., Wooldridge, M. (eds.) 19th European Conference on Artificial Intelligence. Frontiers in Artificial Intelligence and Applications, vol. 215, pp. 131–136. IOS Press, Lisbon (2010)

    Google Scholar 

  6. Bondarenko, A., Dung, P.M., Kowalski, R., Toni, F.: An abstract, argumentation-theoretic approach to default reasoning. Artif. Intell. 93(97), 63–101 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Čyras, K., Toni, F.: ABA+: assumption-based argumentation with preferences. In: Baral, C., Delgrande, J.P., Wolter, F. (eds.) 15th International Conference on Principles of Knowledge Representation and Reasoning, pp. 553–556. AAAI Press, Cape Town (2016)

    Google Scholar 

  8. Dimopoulos, Y., Kakas, A.C.: Logic programming without negation as failure. In: Lloyd, J.W. (ed.) International Symposium on Logic Programming, pp. 369–383. MIT Press, Portland (1995)

    Google Scholar 

  9. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif. Intell. 77, 321–357 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gaggl, S.A., Manthey, N., Ronca, A., Wallner, J.P., Woltran, S.: Improved answer-set programming encodings for abstract argumentation. Theory Pract. Log. Program. 15(4–5), 434–448 (2015)

    Article  MathSciNet  Google Scholar 

  11. García, A.J., Simari, G.R.: Defeasible logic programming: DeLP-servers, contextual queries, and explanations for answers. Argum. Comput. 5(1), 63–88 (2014)

    Article  Google Scholar 

  12. Gordon, T.F., Prakken, H., Walton, D.: The carneades model of argument and burden of proof. Artif. Intell. 171(10–15), 875–896 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gordon, T.F., Walton, D.: Formalizing balancing arguments. In: Baroni, P., Gordon, T.F., Scheffler, T., Stede, M. (eds.) Computational Models of Argument. Frontiers in Artificial Intelligence and Applications, vol. 287, pp. 327–338. IOS Press, Potsdam (2016)

    Google Scholar 

  14. Kakas, A.C., Moraitis, P.: Argumentation based decision making for autonomous agents. In: 2nd International Joint Conference on Autonomous Agents & Multiagent Systems, pp. 883–890. ACM Press, Melbourne (2003)

    Google Scholar 

  15. Liao, B., Oren, N., van der Torre, L., Villata, S.: Prioritized norms and defaults in formal argumentation. In: Roy, O., Tamminga, A., Wille, M. (eds.) 13th International Conference on Deontic Logic and Normative Systems, pp. 139–154. College Publications, Bayreuth (2016)

    Google Scholar 

  16. Modgil, S., Prakken, H.: A general account of argumentation with preferences. Artif. Intell. 195, 361–397 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Prakken, H.: An abstract framework for argumentation with structured arguments. Argum. Comput. 1(2), 93–124 (2010)

    Article  Google Scholar 

  18. Snaith, M., Reed, C.: TOAST: online ASPIC+ implementation. In: Verheij, B., Szeider, S., Woltran, S. (eds.) Computational Models of Argument. Frontiers in Artificial Intelligence and Applications, vol. 245, pp. 509–510. IOS Press, Vienna (2012)

    Google Scholar 

  19. Toni, F.: Reasoning on the web with assumption-based argumentation. In: Eiter, T., Krennwallner, T. (eds.) Reasoning Web 2012. LNCS, vol. 7487, pp. 370–386. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33158-9_10

    Chapter  Google Scholar 

  20. Toni, F.: A tutorial on assumption-based argumentation. Argum. Comput. 5(1), 89–117 (2014)

    Article  Google Scholar 

  21. Wakaki, T.: Assumption-based argumentation equipped with preferences. In: Dam, H.K., Pitt, J., Xu, Y., Governatori, G., Ito, T. (eds.) PRIMA 2014. LNCS (LNAI), vol. 8861, pp. 116–132. Springer, Cham (2014). doi:10.1007/978-3-319-13191-7_10

    Google Scholar 

Download references

Acknowledgements

This research was partially funded by the EPSRC project EP/P029558/1 ROAD2H: Resource Optimisation, Argumentation, Decision Support and Knowledge Transfer to Create Value via Learning Health Systems. We also thank Jeff Thompson for helpful discussions on the use of ABAplus to schedule meetings (Example 5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristijonas Čyras .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Bao, Z., Čyras, K., Toni, F. (2017). ABAplus: Attack Reversal in Abstract and Structured Argumentation with Preferences. In: An, B., Bazzan, A., Leite, J., Villata, S., van der Torre, L. (eds) PRIMA 2017: Principles and Practice of Multi-Agent Systems. PRIMA 2017. Lecture Notes in Computer Science(), vol 10621. Springer, Cham. https://doi.org/10.1007/978-3-319-69131-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69131-2_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69130-5

  • Online ISBN: 978-3-319-69131-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics