XLink: An Unsupervised Bilingual Entity Linking System | SpringerLink
Skip to main content

XLink: An Unsupervised Bilingual Entity Linking System

  • Conference paper
  • First Online:
Chinese Computational Linguistics and Natural Language Processing Based on Naturally Annotated Big Data (NLP-NABD 2017, CCL 2017)

Abstract

Entity linking is a task of linking mentions in text to the corresponding entities in a knowledge base. Recently, entity linking has received considerable attention and several online entity linking systems have been published. In this paper, we build an online bilingual entity linking system XLink, which is based on Wikipeida and Baidu Baike. XLink conducts two steps to link the mentions in the input document to entities in knowledge base, namely mention parsing and entity disambiguation. To eliminate dependency of language, we conduct mention parsing without any named entity recognition tools. To ensure the correctness of linking results, we propose an unsupervised generative probabilistic method and utilize text and knowledge joint representations to perform entity disambiguation. Experiments show that our system gets a state-of-the-art performance and a high time efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/masha-p/PPRforNED.

  2. 2.

    https://github.com/NLPchina/ansj_seg.

References

  1. Aho, A.V., Corasick, M.J.: Efficient string matching: an aid to bibliographic search. Commun. ACM 18(6), 333–340 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alhelbawy, A., Gaizauskas, R.J.: Graph ranking for collective named entity disambiguation. In: ACL, vol. 2, pp. 75–80 (2014)

    Google Scholar 

  3. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia: a nucleus for a web of open data. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC/ISWC -2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007). doi:10.1007/978-3-540-76298-0_52

    Chapter  Google Scholar 

  4. Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collaboratively created graph database for structuring human knowledge. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, pp. 1247–1250 (2008)

    Google Scholar 

  5. Cao, Y., Huang, L., Ji, H., Chen, X., Li, J.: Bridging text and knowledge by learning multi-prototype entity mention embedding. In: Proceedings of ACL (2017)

    Google Scholar 

  6. Cao, Y., Li, J., Guo, X., Bai, S., Ji, H., Tang, J.: Name list only? target entity disambiguation in short texts. EMNLP 15, 654–664 (2015)

    Google Scholar 

  7. Cucerzan, S.: Large-scale named entity disambiguation based on wikipedia data. In: Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, pp. 708–716 (2007)

    Google Scholar 

  8. Dill, S., Eiron, N., Gibson, D., Gruhl, D., Guha, R., Jhingran, A., Kanungo, T., Rajagopalan, S., Tomkins, A., Tomlin, J.A., et al.: Semtag and seeker: Bootstrapping the semantic web via automated semantic annotation. In: Proceedings of the 12th International Conference on World Wide Web, pp. 178–186 (2003)

    Google Scholar 

  9. Ferragina, P., Scaiella, U.: Fast and accurate annotation of short texts with wikipedia pages. IEEE Softw. 29(1), 70–75 (2012)

    Article  Google Scholar 

  10. Finkel, J.R., Grenager, T., Manning, C.: Incorporating non-local information into information extraction systems by gibbs sampling. In: Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics, pp. 363–370 (2005)

    Google Scholar 

  11. Han, X., Sun, L.: A generative entity-mention model for linking entities with knowledge base. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, vol. 1, pp. 945–954 (2011)

    Google Scholar 

  12. Hoffart, J., Yosef, M.A., Bordino, I., Fürstenau, H., Pinkal, M., Spaniol, M., Taneva, B., Thater, S., Weikum, G.: Robust disambiguation of named entities in text. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, pp. 782–792 (2011)

    Google Scholar 

  13. Mendes, P.N., Jakob, M., García-Silva, A., Bizer, C.: Dbpedia spotlight: shedding light on the web of documents. In: Proceedings of the 7th International Conference on Semantic Systems, pp. 1–8 (2011)

    Google Scholar 

  14. Mihalcea, R., Csomai, A.: Wikify!: linking documents to encyclopedic knowledge. In: Proceedings of the Sixteenth ACM Conference on Conference on Information and Knowledge Management, pp. 233–242 (2007)

    Google Scholar 

  15. Milne, D., Witten, I.H.: Learning to link with wikipedia. In: Proceedings of the 17th ACM Conference on Information and Knowledge Management, pp. 509–518 (2008)

    Google Scholar 

  16. Pan, L., Wang, Z., Li, J., Tang, J.: Domain specific cross-lingual knowledge linking based on similarity flooding. In: Lehner, F., Fteimi, N. (eds.) KSEM 2016. LNCS, vol. 9983, pp. 426–438. Springer, Cham (2016). doi:10.1007/978-3-319-47650-6_34

    Chapter  Google Scholar 

  17. Pershina, M., He, Y., Grishman, R.: Personalized page rank for named entity disambiguation. In: HLT-NAACL, pp. 238–243 (2015)

    Google Scholar 

  18. Ratinov, L., Roth, D., Downey, D., Anderson, M.: Local and global algorithms for disambiguation to wikipedia. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, vol. 1, pp. 1375–1384 (2011)

    Google Scholar 

  19. Shen, W., Wang, J., Han, J.: Entity linking with a knowledge base: Issues, techniques, and solutions. IEEE Trans. Knowl. Data Eng. 27(2), 443–460 (2015)

    Article  Google Scholar 

  20. Shirakawa, M., Wang, H., Song, Y., Wang, Z., Nakayama, K., Hara, T., Nishio, S.: Entity disambiguation based on a probabilistic taxonomy. Microsoft Research, Seattle, WA, USA, Tech. Rep. MSR-TR-2011-125 (2011)

    Google Scholar 

  21. Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: a core of semantic knowledge. In: WWW (2007)

    Google Scholar 

  22. Weston, J., Bordes, A., Chopra, S., Rush, A.M., van Merriënboer, B., Joulin, A., Mikolov, T.: Towards ai-complete question answering: a set of prerequisite toy tasks. arXiv preprint arXiv:1502.05698 (2015)

  23. Yamada, I., Ito, T., Usami, S., Takagi, S., Takeda, H., Takefuji, Y.: Evaluating the helpfulness of linked entities to readers. In: Proceedings of the 25th ACM Conference on Hypertext and Social Media, pp. 169–178 (2014)

    Google Scholar 

  24. Yamada, I., Shindo, H., Takeda, H., Takefuji, Y.: Joint learning of the embedding of words and entities for named entity disambiguation. arXiv preprint arXiv:1601.01343 (2016)

  25. Yao, X., Van Durme, B.: Information extraction over structured data: question answering with freebase. In: ACL, vol. 1, pp. 956–966 (2014)

    Google Scholar 

  26. Zhang, Y., Jin, H., Pan, L., Li, J.Z.: Rimom results for OAEI 2016. In: OM@ ISWC, pp. 210–216 (2016)

    Google Scholar 

Download references

Acknowledgements

The work is supported by 973 Program (No. 2014CB340504), NSFC key project (No. 61533018, 61661146007), Fund of Online Education Research Center, Ministry of Education (No. 2016ZD102), THUNUS NExT Co-Lab, National Natural Science Foundation of China (Grant No. 61375054) and Natural Science Foundation of Guangdong Province (Grant No. 2014A030313745).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juanzi Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Zhang, J., Cao, Y., Hou, L., Li, J., Zheng, HT. (2017). XLink: An Unsupervised Bilingual Entity Linking System. In: Sun, M., Wang, X., Chang, B., Xiong, D. (eds) Chinese Computational Linguistics and Natural Language Processing Based on Naturally Annotated Big Data. NLP-NABD CCL 2017 2017. Lecture Notes in Computer Science(), vol 10565. Springer, Cham. https://doi.org/10.1007/978-3-319-69005-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69005-6_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69004-9

  • Online ISBN: 978-3-319-69005-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics