Multi-neighbourhood Great Deluge for Google Machine Reassignment Problem | SpringerLink
Skip to main content

Multi-neighbourhood Great Deluge for Google Machine Reassignment Problem

  • Conference paper
  • First Online:
Simulated Evolution and Learning (SEAL 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10593))

Included in the following conference series:

  • 3185 Accesses

Abstract

Google Machine Reassignment Problem (GMRP) is a recent real world problem proposed at ROADEF/EURO challenge 2012. The aim of this problem is to maximise the usage of the available machines by reassigning processes among those machines while a numerous constraints must be not violated. In this work, we propose a great deluge algorithm with multi-neighbourhood operators (MNGD) for GMRP. Great deluge (GD) algorithm is a single solution based heuristic that accept non-improving solutions in order to escape from the local optimal point. The proposed algorithm uses multi-neighbourhood operators of various characteristics to effectively navigate the search space. The proposed algorithm is evaluated on a total of 30 instances. Computational results disclose that our proposed MNGD algorithm performed better than GD with single neighbourhood operator. Furthermore, MNGD algorithm obtains best results compared with other algorithms from the literature on some instances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Roadef/euro challenge 2012: Machine reassignment. http://challenge.roadef.org/2012/en/

  2. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G., Patterson, D., Rabkin, A., Stoica, I., et al.: A view of cloud computing. Commun. ACM 53(4), 50–58 (2010)

    Article  Google Scholar 

  3. Brandt, F., Speck, J., Völker, M.: Constraint-based large neighborhood search for machine reassignment. Ann. Oper. Res. 242(1), 63–91 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A., Buyya, R.: CloudSim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms. Softw.: Pract. Exp. 41(1), 23–50 (2011)

    Google Scholar 

  5. Paul, P.C., Beasley, J.E.: A genetic algorithm for the multidimensional knapsack problem. J. Heuristics 4(1), 63–86 (1998)

    Article  MATH  Google Scholar 

  6. Dueck, G.: New optimization heuristics: the great deluge algorithm and the record-to-record travel. J. Comput. Phys. 104(1), 86–92 (1993)

    Article  MATH  Google Scholar 

  7. Gavranović, H., Buljubašić, M., Demirović, E.: Variable neighborhood search for google machine reassignment problem. Electron. Notes Discrete Math. 39, 209–216 (2012)

    Article  MATH  Google Scholar 

  8. Lopes, R., Morais, V.W., Noronha, T.F., Souza, V.A.: Heuristics and matheuristics for a real-life machine reassignment problem. Int. Trans. Oper. Res. 22(1), 77–95 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Masson, R., Vidal, T., Michallet, J., Penna, P.H.V., Petrucci, V., Subramanian, A., Dubedout, H.: An iterated local search heuristic for multi-capacity bin packing and machine reassignment problems. Expert Syst. Appl. 40(13), 5266–5275 (2013)

    Article  Google Scholar 

  10. Mehta, D., O’Sullivan, B., Simonis, H.: Comparing solution methods for the machine reassignment problem. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 782–797. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33558-7_56

    Chapter  Google Scholar 

  11. Ritt, M.R.P.: An algorithmic study of the machine reassignment problem. Ph.D. thesis, Universidade Federal do Rio Grande do Sul (2012)

    Google Scholar 

  12. Sabar, N.R., Song, A.: Grammatical evolution enhancing simulated annealing for the load balancing problem in cloud computing. In: Proceedings of the 2016 on Genetic and Evolutionary Computation Conference, pp. 997–1003. ACM (2016)

    Google Scholar 

  13. Sabar, N.R., Song, A., Zhang, M.: A variable local search based memetic algorithm for the load balancing problem in cloud computing. In: Squillero, G., Burelli, P. (eds.) EvoApplications 2016. LNCS, vol. 9597, pp. 267–282. Springer, Cham (2016). doi:10.1007/978-3-319-31204-0_18

    Chapter  Google Scholar 

  14. Turabieh, H., Abdullah, S., McCollum, B.: Electromagnetism-like mechanism with force decay rate great deluge for the course timetabling problem. In: Wen, P., Li, Y., Polkowski, L., Yao, Y., Tsumoto, S., Wang, G. (eds.) RSKT 2009. LNCS, vol. 5589, pp. 497–504. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02962-2_63

    Chapter  Google Scholar 

  15. Turky, A., Sabar, N.R., Sattar, A., Song, A.: Parallel late acceptance hill-climbing algorithm for the Google machine reassignment problem. In: Kang, B.H., Bai, Q. (eds.) AI 2016. LNCS (LNAI), vol. 9992, pp. 163–174. Springer, Cham (2016). doi:10.1007/978-3-319-50127-7_13

    Chapter  Google Scholar 

  16. Turky, A., Sabar, N.R., Song, A.: An evolutionary simulating annealing algorithm for Google machine reassignment problem. In: Leu, G., Singh, H.K., Elsayed, S. (eds.) Intelligent and Evolutionary Systems. PALO, vol. 8, pp. 431–442. Springer, Cham (2017). doi:10.1007/978-3-319-49049-6_31

    Chapter  Google Scholar 

  17. Turky, A., Sabar, N.R., Song, A.: Cooperative evolutionary heterogeneous simulated annealing algorithm for Google machine reassignment problem. Genetic Program. Evolvable Mach. 1–28 (2017). doi:10.1007/s10710-017-9305-0

  18. Turky, A., Sabar, N.R., Song, A.: Neighbourhood analysis: a case study on Google machine reassignment problem. In: Wagner, M., Li, X., Hendtlass, T. (eds.) ACALCI 2017. LNCS, vol. 10142, pp. 228–237. Springer, Cham (2017). doi:10.1007/978-3-319-51691-2_20

    Chapter  Google Scholar 

  19. Wang, Z., Lü, Z., Ye, T.: Multi-neighborhood local search optimization for machine reassignment problem. Comput. Oper. Res. 68, 16–29 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayad Turky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Turky, A., Sabar, N.R., Sattar, A., Song, A. (2017). Multi-neighbourhood Great Deluge for Google Machine Reassignment Problem. In: Shi, Y., et al. Simulated Evolution and Learning. SEAL 2017. Lecture Notes in Computer Science(), vol 10593. Springer, Cham. https://doi.org/10.1007/978-3-319-68759-9_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68759-9_57

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68758-2

  • Online ISBN: 978-3-319-68759-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics