Generalized Hybrid Evolutionary Algorithm Framework with a Mutation Operator Requiring no Adaptation | SpringerLink
Skip to main content

Generalized Hybrid Evolutionary Algorithm Framework with a Mutation Operator Requiring no Adaptation

  • Conference paper
  • First Online:
Simulated Evolution and Learning (SEAL 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10593))

Included in the following conference series:

  • 3162 Accesses

Abstract

This paper presents a generalized hybrid evolutionary optimization structure that not only combines both nondeterministic and deterministic algorithms on their individual merits and distinct advantages, but also offers behaviors of the three originating classes of evolutionary algorithms (EAs). In addition, a robust mutation operator is developed in place of the necessity of mutation adaptation, based on the mutation properties of binary-coded individuals in a genetic algorithm. The behaviour of this mutation operator is examined in full and its performance is compared with adaptive mutations. The results show that the new mutation operator outperforms adaptive mutation operators while reducing complications of extra adaptive parameters in an EA representation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Conn, A.R., Scheinberg, K., Vicente, L.N.: Introduction to Derivative-Free Optimization. SIAM, Philadelphia (2009)

    Book  MATH  Google Scholar 

  2. Powell, M.J.D.: Direct search algorithms for optimisation calculations. Acta Numer. 7, 287–336 (1998). doi:10.1017/S0962492900002841

    Article  MATH  Google Scholar 

  3. Fogel, D.B.: Evolutionary computation: towards a new philosophy of machine intelligence. IEEE Press, New York (1995). doi:10.1002/0471749214

    MATH  Google Scholar 

  4. Grosan, C., Abraham, A.: Hybrid Evolutionary Algorithms: Methodologies, Architectures, and Reviews. In: Abraham, A., Grosan, C., Ishibuchi, H. (eds.) Hybrid Evolutionary Algorithms. Studies in Computational Intelligence, vol. 75, pp. 1–17. Springer, Heidelberg (2007). doi:10.1007/978-3-540-73297-6_1

    Chapter  Google Scholar 

  5. Lin, Q., Chen, J., Zhan, Z.H.: A hybrid evolutionary immune algorithm for multiobjective optimization problems. IEEE Trans. Evol. Comput. 20(5), 711–729 (2016). doi:10.1109/TEVC.2015.2512930

    Google Scholar 

  6. Chen, G., Low, C.P., Yang, Z.H.: Preserving and exploiting genetic diversity in evolutionary programming algorithms. IEEE Trans. Evol. Comput. 13, 661–673 (2009). doi:10.1109/TEVC.2008.2011742

    Article  Google Scholar 

  7. Bäck, T., Fogel, D.B., Michalewicz, Z. (eds.): Handbook of Evolutionary Computation. Institute of Physics Publishing Ltd/Oxford University Press, Bristol/Oxford (1997)

    MATH  Google Scholar 

  8. Guo, P., Cheng, W., Wang, Y.: Hybrid evolutionary algorithm with extreme machine learning fitness function evaluation for two-stage capacitated facility location problem. Expert Syst. Appl. 71, 57–68 (2016). doi:10.1016/j.eswa.2016.11.025

    Article  Google Scholar 

  9. Cheng, T.C.E., Peng, B., Lü, Z.: A hybrid evolutionary algorithm to solve the job shop scheduling problem. Ann. Oper. Res. 242(2), 223–237 (2016). doi:10.1007/s10479-013-1332-5

    Article  MathSciNet  MATH  Google Scholar 

  10. Zhu, Q., Lin, Q., Du, Z.: A novel adaptive hybrid crossover operator for multiobjective evolutionary algorithm. Inf. Sci. 345, 177–198 (2016). doi:10.1016/j.ins.2016.01.046

    Article  Google Scholar 

  11. Anderson, R.W.: The Baldwin effect. In: Bäck, T., Fogel, D.B., Michalewicz, Z. (eds.): Handbook of Evolutionary Computation, pp. C3.4:1–C3.4:7. Institute of Physics Publishing Ltd/Oxford University Press (1997)

    Google Scholar 

  12. Li, L., Zhang, C.Z., Li, Z.N., Li, Y.: Particle filter with Lamarckian inheritance for nonlinear filtering. In: 2016 IEEE Congress on Evolutionary Computation, pp. 2852–2857. IEEE, Vancouver (2016). doi:10.1109/CEC.2016.7744149

  13. Li, L., Li, Y.: Particle filter track-before-detect algorithm with Lamarckian inheritance for improved dim target tracking. In: 2017 IEEE Congress on Evolutionary Computation, pp. 1158–1164. IEEE, San Sebastián (2017). doi:10.1109/CEC.2017.7969437

  14. Yao, X., Liu, Y.: Fast evolution strategies. Control Cybern. 26(3), 467–496 (1997). doi:10.1007/BFb0014808

    MathSciNet  MATH  Google Scholar 

  15. Yao, X., Liu, Y., Lin, G.: Evolutionary programming made faster. IEEE Trans. Evol. Comput. 3(2), 82–102 (1999). doi:10.1109/4235.771163

    Article  Google Scholar 

  16. Bäck, T.: Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms. Oxford University Press, Oxford (1996)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Foo, Y.W., Goh, C., Chan, L., Li, L., Li, Y. (2017). Generalized Hybrid Evolutionary Algorithm Framework with a Mutation Operator Requiring no Adaptation. In: Shi, Y., et al. Simulated Evolution and Learning. SEAL 2017. Lecture Notes in Computer Science(), vol 10593. Springer, Cham. https://doi.org/10.1007/978-3-319-68759-9_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68759-9_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68758-2

  • Online ISBN: 978-3-319-68759-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics