Jointly Learning Bilingual Sentiment and Semantic Representations for Cross-Language Sentiment Classification | SpringerLink
Skip to main content

Jointly Learning Bilingual Sentiment and Semantic Representations for Cross-Language Sentiment Classification

  • Conference paper
  • First Online:
Information Retrieval (CCIR 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10390))

Included in the following conference series:

Abstract

Cross-language sentiment classification (CLSC) aims at leveraging the semantic and sentiment knowledge in a resource-abundant language (source language) for sentiment classification in a resource-scarce language (target language). This paper proposes an approach to jointly learning bilingual semantic and sentiment representations (BSSR) for English-Chinese CLSC. First, two neural networks are adopted to learn sentence-level sentiment representations in English and Chinese views respectively, which are attached to all word semantic representations in the corresponding sentence to express the words in the certain sentiment context. Then, another two neural networks in two views are designed to jointly learn BSSR of the document from word representations concatenated with their sentence-level sentiment representations. The proposed approach could capture rich sentiment and semantic information in BSSR learning process. Experiments on NLP&CC 2013 CLSC dataset show that our approach is competitive with the state-of-the-art results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://tcci.ccf.org.cn/conference/2013/dldoc/evsam03.zip.

  2. 2.

    http://translate.google.cn/.

  3. 3.

    http://nlp.stanford.edu/software/segmenter.shtml.

  4. 4.

    http://nlp.stanford.edu/projects/glove/.

References

  1. Turney, P.D.: Thumbs up or thumbs down? Semantic orientation applied to unsupervised classification of reviews. In: Proceedings of ACL, USA, pp. 417–424 (2002)

    Google Scholar 

  2. Tang, D.Y., Wei, F.R., Yang, N., Zhou, M., Liu, T., Qin, B.: Learning sentiment-specific word embedding for twitter sentiment classification. In: Proceeding of ACL, USA, pp. 1555–1565 (2014)

    Google Scholar 

  3. Tang, D.Y., Qin, B., Feng, X.C., Liu, T.: Effective LSTMs for target-dependent sentiment classification. In: Proceeding of COLING, Japan, pp. 3298–3307 (2016)

    Google Scholar 

  4. Li, S., Wang, R., Liu, H., Huang, C.R.: Active learning for cross-lingual sentiment classification. In: Zhou, G., Li, J., Zhao, D., Feng, Y. (eds.) NLPCC 2013. Communications in Computer and Information Science, vol. 400, pp. 236–246. Springer, Heidelberg (2013). doi:10.1007/978-3-642-41644-6_22

    Chapter  Google Scholar 

  5. Wan, X.J.: Co-training for cross-lingual sentiment classification. In: Proceedings of ACL, Singapore, pp. 235–243 (2009)

    Google Scholar 

  6. Chen, Q., Li, W.J., Lei, Y., Liu, X.L., He, Y.X.: Learning to adapt credible knowledge in cross-lingual sentiment analysis. In: Proceedings of ACL, China, pp. 419–429 (2015)

    Google Scholar 

  7. Chander, S., Lauly, S., Larochelle, H., et al.: An autoencoder approach to learning bilingual word representations. In: Proceeding of NIPS, Canada, pp. 1853–1861 (2014)

    Google Scholar 

  8. Yoshikawa, Y.Y., Iwata, T., Sawada, H., Yamada, T.: Cross-domain matching for bag-of-words data via kernel embeddings of latent distributions. In: Proceedings of NIPS, Canada, pp. 1405–1413 (2015)

    Google Scholar 

  9. Rajendran, J., Khapra, M., Chandar, S., Ravindran, B.: Bridge correlational neural networks for multilingual multimodal representation learning (2015). arXiv preprint arXiv:1510.03519

  10. Tang, X.W., Wan, X.J.: Learning bilingual embedding model for cross-language sentiment classification. In: the 2014 IEEE/WIC/ACM International Joint Conferences on Web Intelligence and Intelligent Agent Technologies, pp. 134–141 (2014)

    Google Scholar 

  11. Zhou, H.W., Chen, L., Shi, F.L., Huang, D.G.: Learning bilingual sentiment word embeddings for cross-language sentiment classification. In: Proceedings of ACL, China, pp. 430–440 (2015)

    Google Scholar 

  12. Klementiev, A., Ivan, T., Bhattarai, B.: Inducing cross lingual distributed representations of words. In: Proceedings of COLING, Indiana, pp. 1459–1474 (2012)

    Google Scholar 

  13. Jain, S., Batra, S.: Cross-lingual sentiment analysis using modified BRAE. In: Proceedings of EMNLP, Portugal, pp. 159–168 (2015)

    Google Scholar 

  14. Zhou, X.J., Wan, X.J., Xiao, J.G.: Cross-lingual sentiment classification with bilingual document representation learning. In: Proceedings of ACL, Germany, pp. 1403–1412 (2016)

    Google Scholar 

  15. Zhou, X.J, Wan, X.J and Xiao, J.G.: Attention-based LSTM network for cross-lingual sentiment classification. In: Proceedings of EMNLP, USA, pp. 247–256 (2016)

    Google Scholar 

  16. Collobert, R., Weston, J., Bottou, L., et al.: Natural language processing (almost) from scratch. J. Mach. Learn. Res. 12, 2493–2537 (2011)

    MATH  Google Scholar 

  17. Wang, X., Liu, Y.C., Sun, C.J., Wang, B.X., Wang, X.L.: Predicting polarities of tweets by composing word embeddings with long short-term memory. In: Proceedings of ACL, China, pp. 1343–1353 (2015)

    Google Scholar 

  18. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  19. Gers, F.A., Schmidhuber, J.: Recurrent nets that time and count. In: The IEEE-Inns-Enns International Joint Conference on Neural Networks, vol. 3, pp. 189–194 (2000)

    Google Scholar 

  20. Wilson, T., Wiebe, J., Hoffmann, P.: Recognizing contextual polarity in phrase-level sentiment analysis. Int. J. Comput. Appl. 7(5), 347–354 (2005)

    Google Scholar 

  21. Xu, L.H., Lin, H.F., Pan, Y., Ren, H., Chen, J.M.: Constructing the affective lexicon ontology. J. China Soc. Sci. Tech. Inf. 27(2), 180–185 (2008)

    Google Scholar 

  22. Bastien, F., Lamblin, P., Pascanu, R., et al.: Theano: new features and speed improvements (2012). arXiv preprint arXiv:1211.5590

  23. Pennington, B., Socher, R., Manning, C.D.: Glove: global vectors for word representation. In: Proceedings of EMNLP, USA, pp. 1532–1543 (2014)

    Google Scholar 

  24. Gui, L., Lu, Q., Xu, R., Wei, Q., Cao, Y.: Improving transfer learning in cross lingual opinion analysis through negative transfer detection. In: Zhang, S., Wirsing, M., Zhang, Z. (eds.) KSEM 2015. LNCS, vol. 9403, pp. 394–406. Springer, Cham (2015). doi:10.1007/978-3-319-25159-2_36

    Chapter  Google Scholar 

Download references

Acknowledgements

This research is supported by Natural Science Foundation of China (No. 61272375).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huiwei Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Zhou, H., Yang, Y., Liu, Z., Lin, Y., Zhu, P., Huang, D. (2017). Jointly Learning Bilingual Sentiment and Semantic Representations for Cross-Language Sentiment Classification. In: Wen, J., Nie, J., Ruan, T., Liu, Y., Qian, T. (eds) Information Retrieval. CCIR 2017. Lecture Notes in Computer Science(), vol 10390. Springer, Cham. https://doi.org/10.1007/978-3-319-68699-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68699-8_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68698-1

  • Online ISBN: 978-3-319-68699-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics