Abstract
The intermediate map responses of a Convolutional Neural Network (CNN) contain contextual knowledge about its input. In this paper, we present a framework that uses these activation maps from several layers of a CNN as features to a Deep Belief Network (DBN) using transfer learning to provide an understanding of an input image. We create a representation of these features and the training data and use them to extract more information from an image at the pixel level, hence gaining understanding of the whole image. We experimentally demonstrate the usefulness of our framework using a pretrained model and use a DBN to perform segmentation on the BAERI dataset of Synthetic Aperture Radar (SAR) imagery and the CAMVID dataset with a relatively smaller training dataset.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
A previous version of this paper can be found at: https://arxiv.org/pdf/1612.01981.pdf.
References
Results, baeri images. https://drive.google.com/open?id=0B0gFcrqVCm9pUy01bWpheGs3RlU
Badrinarayanan, V., Handa, A., Cipolla, R.: Segnet: a deep convolutional encoder-decoder architecture for robust semantic pixel-wise labelling. arXiv preprint arXiv:1505.07293 (2015)
Bengio, Y.: Learning deep architectures for AI. Found. Trends® Mach. Learn. 2(1), 1–127 (2009)
Brostow, G.J., Fauqueur, J., Cipolla, R.: Semantic object classes in video: a high-definition ground truth database. Pattern Recogn. Lett. 30(2), 88–97 (2008)
Brostow, G.J., Shotton, J., Fauqueur, J., Cipolla, R.: Segmentation and recognition using structure from motion point clouds. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5302, pp. 44–57. Springer, Heidelberg (2008). doi:10.1007/978-3-540-88682-2_5
Chen, S., Wang, H.: Sar target recognition based on deep learning. In: 2014 International Conference on Data Science and Advanced Analytics (DSAA), pp. 541–547. IEEE (2014)
Ganguly, S.: Baeri dataset. Personal Communication. https://drive.google.com/open?id=0B0gFcrqVCm9peTdMdndTV0pQMFE
Girshick, R., Donahue, J., Darrell, T., Malik, J.: Region-based convolutional networks for accurate object detection and segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 38(1), 142–158 (2016)
Hariharan, B., Arbeláez, P., Girshick, R., Malik, J.: Hypercolumns for object segmentation and fine-grained localization. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 447–456 (2015)
Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)
Kotlyakov, V.: A 150,000-year climatic record from Antarctic ice. Nature 316, 591–596 (1985)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)
Ladický, Ľ., Sturgess, P., Alahari, K., Russell, C., Torr, P.H.S.: What, where and how many? combining object detectors and CRFs. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 424–437. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15561-1_31
LeCun, Y., Jackel, L., Bottou, L., Cortes, C., Denker, J.S., Drucker, H., Guyon, I., Muller, U., Sackinger, E., Simard, P., et al.: Learning algorithms for classification: a comparison on handwritten digit recognition. Neural Netw. Stat. Mech. Perspect. 261, 276 (1995)
Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)
Lotter, N., Kowal, D., Tuzun, M., Whittaker, P., Kormos, L.: Sampling and flotation testing of sudbury basin drill core for process mineralogy modelling. Miner. Eng. 16(9), 857–864 (2003)
Noh, H., Hong, S., Han, B.: Learning deconvolution network for semantic segmentation. In: Proceedings of IEEE International Conference on Computer Vision, pp. 1520–1528 (2015)
Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint (2014). arXiv:1409.1556
Theano Development Team: Theano: a Python framework for fast computation of mathematical expressions. arXiv e-prints abs/1605.02688. http://arxiv.org/abs/1605.02688
Torrey, L., Shavlik, J.: Transfer learning. In: Handbook of Research on Machine Learning Applications and Trends: Algorithms, Methods, and Techniques. 1, p. 242 (2009)
Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in deep neural networks? In: Advances in Neural Information Processing Systems, pp. 3320–3328 (2014)
Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014). doi:10.1007/978-3-319-10590-1_53
Zhang, C., Wang, L., Yang, R.: Semantic segmentation of urban scenes using dense depth maps. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 708–721. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15561-1_51
Acknowledgement
The project is partially supported by Army Research Office (ARO) under Grant #W911-NF1010495. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the ARO or the United States Government.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Karki, M., DiBiano, R., Basu, S., Mukhopadhyay, S. (2017). Core Sampling Framework for Pixel Classification. In: Lintas, A., Rovetta, S., Verschure, P., Villa, A. (eds) Artificial Neural Networks and Machine Learning – ICANN 2017. ICANN 2017. Lecture Notes in Computer Science(), vol 10614. Springer, Cham. https://doi.org/10.1007/978-3-319-68612-7_70
Download citation
DOI: https://doi.org/10.1007/978-3-319-68612-7_70
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-68611-0
Online ISBN: 978-3-319-68612-7
eBook Packages: Computer ScienceComputer Science (R0)