Abstract
Semantic similarity is a broad term used to describe many tools, models and methods applied in knowledge bases, semantic graphs, text disambiguation, ontology matching and more. Because of such broad scope it is, in a “general” case, difficult to properly capture and formalize. So far, many models and algorithms have been proposed that, albeit often very different in design and implementation, produce a single score (a number) each. These scores come under the single term of semantic similarity. Whether one is comparing documents, ontologies, entities, or terms, existing methods often propose a universal score—a single number that “captures all aspects of similarity”. In opposition to this approach, we claim that there are many ways, in which semantic entities can be similar. We propose a division of knowledge (and, consequently, similarity) into categories (dimensions) of semantic relationships. Each dimension represents a different “type” of similarity and its implementation is guided by an interpretation of the meaning (semantics) of that similarity score in a particular dimension. Our proposal allows to add extra information to the similarity score, and to highlight differences and similarities between results of existing methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Szmeja, P., Ganzha, M., Paprzycki, M., Pawlowski, W.: Dimensions of ontological similarity. In: 2016 IEEE Tenth International Conference on Semantic Computing (ICSC), pp. 246–249. IEEE, February 2016
Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.: The Description Logic Handbook. Cambridge University Press (2003)
Cohen, W., Borgida, A., Hirsh, H.: Computing least common subsumers in description logics. In: Proceedings of the 10th National Conference on Artificial Intelligence, pp. 754–760. MIT Press (1992)
Baader, F.: Least Common Subsumers and Most Specific Concepts in a Description Logic with Existential Restrictions and Terminological Cycles (2003)
Chang, C., Lee, R.: Symbolic Logic and Mechanical Theorem Proving. Academic Press, San Diego (1973)
d’Amato, C., Fanizzi, N., Esposito, F.: A semantic similarity measure for expressive description logics. In: Proceedings of convegno italiano di logica computazionale (2005)
Shepard, Roger N.: The analysis of proximities: Multidimensional scaling with an unknown distance function. I. Psychometrika. 27(2), 125–140 (1962). doi:10.1007/BF02289630
Hahn, Ulrike, Chater, Nick, Richardson, Lucy B.: Similarity as transformation. Cognition 87(1), 1–32 (2003). doi:10.1016/S0010-0277(02)00184-1
Asl, M.E., et al.: Similitude analysis of composite I-beams with application to subcomponent testing of wind turbine blades. In: Experimental and Applied Mechanics, vo. 4, pp. 115–126. Springer International Publishing (2016)
Tversky, A.: Features of similarity. Psycholog. Rev. 84, 327–352 (1977)
Nothdurft, Hans-Christoph: Feature analysis and the role of similarity in preattentive vision. Atten. Percept. Psychophys. 52(4), 355–375 (1992)
Santini, Simone: Jain, Ramesh: The graphical specification of similarity queries. J. Vis. Lang. Comput. 7(4), 403–421 (1996)
Rubenstein, Herbert, Goodenough, John: Contextual cor-relates of synonymy. CACM 8(10), 627–633 (1965)
Miller, G.A., Charles, W.G.: Contextual correlates of semantic similarity. Lang. Cognit. Processes 6, 1–28 (1991)
Resnik, P.: Using information content to evaluate semantic similarity in a taxonomy. In: Proceedings of the 14th international joint conference on Artificial intelligence, pp. 448–453 (1995)
Milne, D., Witten, I.: An effective, low-cost measure of semantic relatedness obtained from wikipedia links. In: Proceedings of the AAAI Workshop on Wikipedia and Artificial Intelligence: an Evolving Synergy, pp. 25–30 (2008)
Hliaoutakis, A., Varelas, G., Voutsakis, E., Petrakis, E.G., Milios, E.: Information retrieval by semantic similarity. IJSWIS 2(3), 55–73 (2006)
Sanchez, D., Batet, M., Isern, D., Valls, A.: Ontology-based semantic similarity: a new feature-based approach. Expert Syst. Appl. 39(9), 7718–7728 (2012)
Ceccarelli, D., Lucchese, C., Orlando, S., Perego, R., Trani, S.: Learning relatedness measures for entity linking. In: Proceedings of the 22nd ACM international Conference on Information and Knowledge Management, pp. 139–148 (2013)
De Nies, T., et al.: A distance-based approach for semantic dissimilarity in knowledge graphs. In: 2016 IEEE Tenth International Conference on Semantic Computing (ICSC). IEEE (2016)
Ontology Alignment Evaluation Initiative. http://oaei.ontologymatching.org/
Bohm, C., Berchtold, S., Keim, D.A.: Searching in high-dimensional spaces: index structures for improving the performance of multi-media databases. ACM Comput. Surv. 33(3), 322–373 (2001)
Harispe, S., Ranwez, S., Janaqi, S., Montmain, J.: Semantic Measures for the Comparison of Units of Language. Concepts or Instances from Text and Knowledge Representation Analysis, CoRR (2013)
Semantic Measures Library. http://www.semantic-measures-library.org/sml/
Bollegala, D., Matsuo, Y., Ishizuka, M.: A relational model of semantic similarity between words using automatically extracted lexical pattern clusters from the web. In: Conference on Empirical Methods in Natural Language Processing, EMNLP 2009, pp. 803–812. ACL and AFNLP (2009)
Wan, S., Angryk, R.A.: Measuring semantic similarity using wordnet-based context vectors. In: El-Hawary, M. (ed.) IEEE International Conference on Systems, Man and Cybernetics, SMC 2007, pp. 908–913. IEEE Computer Society, Montreal, Quebec, Canada (2007)
Rada, R., Mili, H., Bicknell, E., Blettner, M.: Development and application of a metric on semantic nets. IEEE Trans. Syst. Man Cybern. 19(1), 17–19 (1989)
Wu, Z., Palmer, M.: Verb semantics and lexical selection. In: Proceedings of the 32Nd Annual Meeting on Association for Computational Linguistics, pp. 133–138 (1994)
Rhee, S.K., Lee, J., Park, M.-W., Szymczak, M.: Fra̧ckowiak, G., Ganzha, M., Paprzycki, M.: Measuring semantic closeness of ontologically demarcated resources. Fundam. Inform. 96(4), 395–418 (2009)
Zhang, L., et al.: FSIM: a feature similarity index for image quality assessment. IEEE Trans. Image Process. 20(8), 2378–2386 (2011)
Aha, D., Kibler, D., Albert, M.: Instance-based learning algorithms. Mach. Learn. 6(1), 37–66 (1991)
Fellbaum, C.: WordNet: An Electronic Lexical Database. MIT Press, Cambridge, UK (1998)
Jaccard, P.: Distribution de la flore alpine dans le bassin des Dranses et dans quelques régions voisines. Bull. de la Société Vaudoise des Sci. Nat. 37, 241–272 (1901)
Rodriguez, M.A., Egenhofer, M.J.: Determining semantic similarity among entity classes from different ontologies. IEEE Trans. Knowl. Data Eng. 15, 442–456 (2003)
Petrakis, E.G.M., Varelas, G., Hliaoutakis, A., Raftopoulou, P.: X-similarity: computing semantic similarity between concepts from different ontologies. J. Digit. Inf. Manag. 4, 233–237 (2006)
Shannon, Claude Elwood: A mathematical theory of communication. ACM SIGMOBILE Mob. Comput. Commun. Rev. 5(1), 3–5 (2001)
Pirró, G., Seco, N.: Design, implementation and evaluation of a new semantic similarity metric combining features and intrinsic information content. In: Meersman, R., Tari, Z. (eds.) OTM 2008 Confederated International Conferences CoopIS, DOA, GADA, IS, and ODBASE 2008, Monterrey, Mexico, vol. 5332, pp. 1271–1288. Springer, Heidelberg (2008)
Zhou, Z., Wang, Y., Gu, J.: A new model of information content for semantic similarity in WordNet. In: 2008 Second International Conference on Future Generation Communication and Networking Symposia, FGCNS’08, vol. 3. IEEE (2008)
Seco, N., Veale, T., Hayes, J.: An intrinsic information content metric for semantic similarity in WordNet. In: Proceedings of the 16th European conference on artificial intelligence. IOS Press (2004)
Sánchez, D., Batet, M., Isern, D.: Ontology-based information content computation. Knowl.-Based Syst. 24(2), 297–303 (2011)
Pirró, G.: A semantic similarity metric combining features and intrinsic information content. Data Knowl. Eng. 68, 1289–1308 (2009)
Hamming, Richard W.: Error detecting and error correcting codes. Bell Syst. Tech. J. 29(2), 147–160 (1950). doi:10.1002/j.1538-7305.1950.tb00463.x, MR 0035935
Calle, F.J., Castro,E., Cuadra, D.: Ontological Dimensions Applied to Natural Interaction. In: ONTORACT ’08 Proceedings of the 2008 First International Workshop on Ontologies in Interactive Systems, p. 91–96
Albacete, E., Calle, J., Castro, E., Cuadra, D.: Semantic similarity measures applied to an ontology for human-like interaction. J. Artif. Intell. Res. 44, 397–421 (2012)
Euzenat, J., Valtchev, P.: Similarity-based ontology alignment in OWL-lite. In: ECAI. vol. 16 (2004)
Rahm, Erhard: Bernstein, Philip: A survey of approaches to auto-matic schema matching. VLDB J. 10(4), 334–350 (2001)
Euzenat, J., Shvaiko, P.: Ontology Matching. Springer, Berlin (2007)
Lin, F.: State of the art: automatic ontology matching. Tekniska Högskolan (2007)
Shvaiko, Pavel: Euzenat, Jérôme: Ontology matching: state of the art and future challenges. IEEE Trans. Knowl. Data Eng. 25(1), 158–176 (2013)
Lin, D.: An information-theoretic definition of similarity. In Proceedings of the Fifteenth International Conference on Machine Learning, pp. 296–304 (1998)
Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M.: et. al.: Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nature genetics. 25(1), pp. 25–29. Stanford University School of Medicine, California, USA, Department of Genetics (2000)
Pesquita, C., Faria, D., Falca, A.O., Lord, P., Couto, F.M.: Semantic Similarity in Biomedical Ontologies (2009)
Jean-Mary, Y.R., Shironoshita, E.P., Kabuka, M.R.: Ontology Matching with Semantic Verification. INFOTECH Soft, Inc., 9200 S Dadeland Blvd. Suite 620, Miami, FL 33156, USA 1 University of Miami, Coral Gables, FL 33124, USA
Vargas-Vera, M., Nagy, M., Motta, E.: DSSim—managing uncertainty on the semantic web, pp. 1–11 (2011). http://oro.open.ac.uk/23598/1/10.1.1.104.99635B15D.pdf
Ichise, R.: Machine learning approach for ontology mapping using multiple concept similarity measures. In: Seventh IEEE/ACIS International Conference on Computer and Information Science (icis 2008), Portland/Oregon. IEEE
Navigli, R.: Word sense disambiguation: A survey. ACM Comput. Surv. (CSUR) 41(2), 10 (2009)
Bunescu, R.C., Pasca, M.: Using encyclopedic knowledge for named entity disambiguation. In: EACL, vol. 6 (2006)
Lund, Kevin: Burgess, Curt: Producing high-dimensional semantic spaces from lexical co-occurrence. Behav. Res. Methods Instrum. Comput. 28(2), 203–208 (1996)
Pekar, V., Staab, S.: Taxonomy learning: factoring the structure of a taxonomy into a semantic classification decision. In: Proceedings of 19th International Conference on Computational Linguistics, pp. 1–7 (2012)
Jiang, J.J., Conrath, D.W.: Semantic similarity based on corpus statistics and lexical taxonomy. In: International Conference on Research on Computational Linguistics (1997)
Maguitman, A.G., Menczer, F., Roinestad, H., Vespignani, A.: Algorithmic detection of semantic similarity. In: Proceedings of the 14th International Conference on World Wide Web, pp. 107–116 (2005)
Harispe, S., Sánchez, D., Ranweza, S., Janaqia, S., Montmaina, J.: A framework for unifying ontology-based semantic similarity measures: a study in the biomedical domain. J. Biomed. Inform. 48, 38–53 (2014)
Horrocks, I., Sattler, U.: A description logic with transitive and inverse roles and role hierarchies. J. Log. Comput. 9(3), 385–410 (1999)
Blank, A.: Words and concepts in time: towards diachronic cognitive onomasiology. In: Eckardt, R., von Heusinger, K., Schwarze, C. (eds.) Words in Time, pp. 37–66. Mouton de Gruyter, Berlin, Germany (2013)
Lehmann, K.: A Framework for Semantic Invariant Similarity Measures for ELH Concept Descriptions. Diplomarbeit, Technishe Universitat Dresden (2012)
http://www.flmnh.ufl.edu/fish/gallery/descript/silvertipshark/silvertipshark.html
http://www.arkive.org/lesser-electric-ray/narcine-brasiliensis/
Cunningham, P.: A taxonomy of similarity mechanisms for case-based reasoning. IEEE Trans. Knowl. Data Eng. 21(11), 1532–1543 (2009)
Zerzucha, P., Walczak, B.: Concept of (dis)similarity in data analysis. Trends Anal. Chem. 38, 116–128 (2012)
Detyniecki, M.: Mathematical aggregation operators and their application to video querying. Research Report, LIP6, Paris (2001)
Dubois, D., Prade, H.: On the use of aggregation operations in information fusion processes. Fuzzy Sets Syst. 142, 143–161 (2004)
Younes, A.A., Blanchard, F., Herbin, M.: New similarity index based on the aggregation of membership functions through OWA operator. In: 2015 Federated Conference on Computer Science and Information Systems (FedCSIS). IEEE (2015)
Bach, T., Dieng-Kuntz, R.: Measuring similarity of elements in owl DL ontologies. In: Theory, Practice and Applications, Workshop on Contexts and Ontologies (2005)
MusicBrainz—The Open Music Encyclopedia. https://musicbrainz.org/
Le B.T., Dieng-Kuntz R., Gandon F.: Ontology matching: A machine learning approach for building a corporate semantic web in a multi-communities organization, 14–17 April 2004
Gracia, J., Asooja, K.: Monolingual and cross-lingual ontology matching with CIDER-CL: evaluation report for OAEI 2013. In: Proceedings of the 8th Ontology Matching Workshop (OM’13), at 12th International Semantic Web Conference (ISWC’13), Syndey (Australia), CEUR-WS, vol. 1111 October 2013. ISSN-1613-0073
Seddiqui, M.H., Aono. M.: Anchor-flood: results for OAEI 2009. In: Proceedings of the 4th International Conference on Ontology Matching-Volume 551. CEUR-WS. org (2009)
Otero-Cerdeira, Lorena, Rodríguez-Martínez, Francisco J., Gómez-Rodríguez, Alma: Ontology matching: a literature review. Expert Syst. Appl. 42(2), 949–971 (2015)
Hu, Wei: Yuzhong, Qu: Falcon-AO: a practical ontology matching system. Web Semant. Sci. Serv. Agents. World Wide Web 6(3), 237–239 (2008)
Cruz, I.F., Antonelli, F.P.: Stroe. C.: AgreementMaker: efficient matching for large real-world schemas and ontologies. Proc. VLDB Endow. 2(2), 1586–1589 (2009)
Massmann, S., et al.: Evolution of the COMA match system. In: Proceedings of the 6th International Conference on Ontology Matching-Volume 814. CEUR-WS. org (2011)
Mihalcea, R., Corley, C., Strapparava, C.: Corpus-based and knowledge-based measures of text semantic similarity. In: AAAI, vol. 6 (2006)
Murphy, M. L.: Semantic relations and the lexicon: antonymy, synonymy and other paradigms. Cambridge University Press (2003)
Li, J., Resnik, P., Daumé III.H.: Modeling syntactic and semantic structures in hierarchical phrase-based translation. In: HLT-NAACL (2013)
Besnier, Niko: Language and affect. Annu. Rev. Anthropol. 19, 419–451 (1990)
Strapparava, C., Valitutti. A.: WordNet Affect: an Affective Extension of WordNet. In: LREC, vol. 4 (2004)
Benabderrahmane, S., Smail-Tabbone, M., Poch, O., Napoli, A., Devignes, M-D.: IntelliGO a new vector-based semantic similarity measure including annotation origin. BMC Bioinform. 11(1) (2010)
Goldkuhl, G.: Design theories in information systems-a need for multi-grounding. JITTA J. Inf. Technol. Theor. Appl. 6(2), 59 (2004)
Dietz, J.L.G.: What is Enterprise Ontology?. Springer, Heidelberg (2006)
Google Knowledge Graph. https://developers.google.com/structured-data/customize/overview
Open Directory Project. https://www.dmoz.org/
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this chapter
Cite this chapter
Szmeja, P., Ganzha, M., Paprzycki, M., Pawłowski, W. (2018). Dimensions of Semantic Similarity. In: Gawęda, A., Kacprzyk, J., Rutkowski, L., Yen, G. (eds) Advances in Data Analysis with Computational Intelligence Methods. Studies in Computational Intelligence, vol 738. Springer, Cham. https://doi.org/10.1007/978-3-319-67946-4_3
Download citation
DOI: https://doi.org/10.1007/978-3-319-67946-4_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-67945-7
Online ISBN: 978-3-319-67946-4
eBook Packages: EngineeringEngineering (R0)