Ad Hoc Metric for Correspondence Analysis Between Fuzzy Partitions | SpringerLink
Skip to main content

Ad Hoc Metric for Correspondence Analysis Between Fuzzy Partitions

  • Conference paper
  • First Online:
Scalable Uncertainty Management (SUM 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10564))

Included in the following conference series:

Abstract

Correspondence analysis is a very common and renowned statistical technique, with applications in data summarization, classification, regression, etc. One particular approach is that of comparing different partitions over the same set of objects. Moreover, it can be interesting to analyze correspondences at different detail levels, not only between partitions, but between classes in these partitions. In addition, the case of fuzzy partitions over data is still a researching milestone in development. In this work we propose a novel measure following a previous definition of an alternate methodology in terms of data mining tools, in order to overcome some limitations of the former one for the case of considering partial and global correspondences between fuzzy partitions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Anderson, D.T., Bezdek, J.C., Keller, J.M., Popescu, M.: A comparison of five fuzzy rand indices. In: Hüllermeier, E., Kruse, R., Hoffmann, F. (eds.) IPMU 2010. CCIS, vol. 80, pp. 446–454. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14055-6_46

    Chapter  Google Scholar 

  2. Anderson, D.T., Bezdek, J.C., Popescu, M., Keller, J.M.: Comparing fuzzy, probabilistic, and possibilistic partitions. IEEE Trans. Fuzzy Syst. 18(5), 906–918 (2010)

    Article  Google Scholar 

  3. Benzécri, J.: Cours de Linguistique Mathématique. Faculté des Sciences, Université de Rennes (1964)

    Google Scholar 

  4. Beringer, J., Hüllermeier, E.: Fuzzy clustering of parallel data streams. In: Advances in Fuzzy Clustering and Its Application, pp. 333–352 (2007)

    Google Scholar 

  5. Berzal, F., Blanco, I., Sánchez, D., Serrano, J., Vila, M.: A definition for fuzzy approximate dependencies. Fuzzy Sets Syst. 149(1), 105–129 (2005). Fuzzy Sets in Knowledge Discovery

    Article  MathSciNet  MATH  Google Scholar 

  6. Brouwer, R.K.: Extending the rand, adjusted rand and jaccard indices to fuzzy partitions. J. Intell. Inform. Syst. 32(3), 213–235 (2009)

    Article  Google Scholar 

  7. Calero, G., Delgado, J., Serrano, J., Sánchez, D., Vila, M.: A proposal of fuzzy correspondence analysis based on flexible data mining techniques. In: Soft Methodology and Random Information Systems, pp. 447–454. Springer, Heidelberg (2004)

    Google Scholar 

  8. Campello, R.J.: A fuzzy extension of the rand index and other related indexes for clustering and classification assessment. Pattern Recogn. Lett. 28(7), 833–841 (2007)

    Article  Google Scholar 

  9. Cox, M.A.A., Cox, T.F.: Multidimensional Scaling, pp. 315–347. Springer, Heidelberg (2008)

    Google Scholar 

  10. Delgado, M., Ruiz, M., Sánchez, D., Serrano, J.: A formal model for mining fuzzy rules using the RL representation theory. Inform. Sci. 181(23), 5194–5213 (2011)

    Article  MATH  Google Scholar 

  11. Frigui, H., Hwang, C., Rhee, F.C.-H.: Clustering and aggregation of relational data with applications to image database categorization. Pattern Recogn. 40(11), 3053–3068 (2007)

    Article  MATH  Google Scholar 

  12. Greenacre, M.: Correspondence Analysis in Practice, 3rd edn. CRC Press, Boca Raton (2016)

    MATH  Google Scholar 

  13. Hullermeier, E., Rifqi, M., Henzgen, S., Senge, R.: Comparing fuzzy partitions: a generalization of the rand index and related measures. IEEE Trans. Fuzzy Syst. 20(3), 546–556 (2012)

    Article  Google Scholar 

  14. Jaccard, P.: Étude comparative de la distribution florale dans une portion des alpes et des jura. Bulletin del la Société Vaudoise des Sciences Naturelles 37, 547–579 (1901)

    Google Scholar 

  15. Meseguer Artola, A., Aibar Puentes, E., Lladós Masllorens, J., Minguillón Alfonso, J., Lerga Felip, M.: Factors that influence the teaching use of wikipedia in higher education (2014)

    Google Scholar 

  16. Molina, C., Prados, B., Ruiz, M.-D., Sánchez, D., Serrano, J.-M.: Comparing partitions by means of fuzzy data mining tools. In: Hüllermeier, E., Link, S., Fober, T., Seeger, B. (eds.) SUM 2012. LNCS (LNAI), vol. 7520, pp. 337–350. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33362-0_26

    Chapter  Google Scholar 

  17. Rand, W.M.: Objective criteria for the evaluation of clustering methods. J. Am. Stat. Assoc. 66(336), 846–850 (1971)

    Article  Google Scholar 

  18. Ruspini, E.H.: A new approach to clustering. Inform. Control 15(1), 22–32 (1969)

    Article  MATH  Google Scholar 

  19. Sánchez, D., Serrano, J.M., Vila, M.A., Aranda, V., Calero, J., Delgado, G.: Using data mining techniques to analyze correspondences between user and scientific knowledge in an agricultural environment. In: Piattini, M., Filipe, J., Braz, J. (eds.) Enterprise Information Systems IV, pp. 75–89. Kluwer Academic Publishers, Hingham (2003)

    Google Scholar 

  20. Shortliffe, E., Buchanan, B.: A model of inexact reasoning in medicine. Math. Biosci. 23, 351–379 (1975)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work has been partially supported by the Spanish Ministry of Economy and Competitiveness and the European Regional Development Fund (FEDER) under projects TIN2015-64776-C3-1-R and TIN2014-58227-P, and by the Energy IN TIME project funded from the European Union in the Seventh Framework Programme under grant agreement No. 608981.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José M. Serrano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Molina, C., Ruiz, M.D., Sánchez, D., Serrano, J.M. (2017). Ad Hoc Metric for Correspondence Analysis Between Fuzzy Partitions. In: Moral, S., Pivert, O., Sánchez, D., Marín, N. (eds) Scalable Uncertainty Management. SUM 2017. Lecture Notes in Computer Science(), vol 10564. Springer, Cham. https://doi.org/10.1007/978-3-319-67582-4_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67582-4_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67581-7

  • Online ISBN: 978-3-319-67582-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics