Abstract
Berge-Zhukovskii equilibrium is an alternate solution concept to Nash equilibrium that induces cooperation in non-cooperative games. A solution of a game is a Berge-Zhukovskii equilibrium if the payoff of each player cannot increase regardless of what the other players do. The Berge-Zhukovskii equilibrium has been found to be us useful in trust games. We propose a new method, based on evolutionary algorithms, to detect and track the Berge-Zhukovskii equilibrium of a game considering a discrete-time dynamic environment. To test our method we propose a new dynamic multiplayer game model, based on the Voluntary contribution mechanism. Numerical results show the potential of the proposed method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abalo, K., Kostreva, M.: Berge equilibrium: some recent results from fixed-point theorems. Appl. Math. Comput. 169, 624–638 (2005)
Abalo, K.Y., Kostreva, M.M.: Intersection theorems and their applications to berge equilibria. Appl. Math. Comput. 182(2), 1840–1848 (2006)
Bäck, T., Fogel, D., Michalewicz, Z. (eds.): Evolutionary Computation 1: Basic Algorithms and Operators. Institute of Physics Publishing, Bristol (2000)
Branke, J.: Evolutionary Optimization in Dynamic Environments. Kluwer Academic Publishers, Norwell (2001)
Colman, A.M., Korner, T.W., Musy, O., Tazdait, T.: Mutual support in games: some properties of Berge equilibria. J. Math. Psychol. 55(2), 166–175 (2011)
Courtois, P., Nessah, R., Tazdat, T.: How to play games? Nash versus Berge behaviour rules. Econ. Philos. 31, 123–139 (2015). http://journals.cambridge.org/article_S026626711400042X
Courtois, P., Nessah, R., Tazdat, T.: How to play games? Nash versus Berge behaviour rules. Econ. Philos. 31(1), 123–139 (2015)
Das, S., Suganthan, P.: Differential evolution: a survey of the state-of-the-art. IEEE Trans. Evol. Comput. 15(1), 4–31 (2011)
Gaskó, N., Dumitrescu, D., Lung, R.I.: Evolutionary detection of Berge and Nash equilibria. In: Pelta, D., Krasnogor, N., Dumitrescu, D., Chira, C., Lung, R. (eds.) Nature Inspired Cooperative Strategies for Optimization (NICSO 2011). Studies in Computational Intelligence, vol. 387, pp. 149–158. Springer, Heidelberg (2012)
Hansen, N., Mller, S., Koumoutsakos, P.: Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES). Evol. Comput. 11(1), 1–18 (2003)
Larbani, M., Nessah, R.: A note on the existence of Berge and Berge-Nash equilibria. Mathe. Soc. Sci. 55, 258–271 (2008)
Lung, R.I., Dumitrescu, D.: Computing Nash equilibria by means of evolutionary computation. Int. J. of Comput. Commun. Control 3, 364–368 (2008)
Lung, R.I., Mihoc, T.D., Dumitrescu, D.: Nash equilibria detection for multi-player games. In: Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2010, Barcelona, Spain, pp. 1–5, 18–23 July 2010
Lung, R.I., Suciu, M., Gaskó, N., Dumitrescu, D.: Characterization and detection of Epsilon-Berge-Zhukovskii Equilibria. PLOS ONE 10(7), July 2015. e0131983
Musy, O., Pottier, A., Tazdait, T.: A new theorem to find berge equilibria. Int. Game Theory Rev. (IGTR) 14(01) (2012). 1250005-1-1
Nessah, R., Larbani, M., Tazdait, T.: A note on Berge equilibrium. Appl. Mathe. Lett. 20(8), 926–932 (2007)
Storn, R., Price, K.: Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)
Thomsen, R.: Multimodal optimization using crowding-based differential evolution. In: Proceedings of the 2004 IEEE Congress on Evolutionary Computation. pp. 1382–1389. IEEE Press, Portland (2004)
Zhukovskii, V.I., Chikrii, A.A.: Linear-quadratic differential games. Naukova Dumka, Kiev (1994)
Acknowledgment
This work was supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNCS - UEFISCDI, project number PN-II-RU-TE-2014-4-2560.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this paper
Cite this paper
Gaskó, N., Suciu, M.A., Lung, R.I. (2018). Computation of Berge-Zhukovskii Equilibrium in Discrete Time Dynamic Games. In: Pérez García, H., Alfonso-Cendón, J., Sánchez González, L., Quintián, H., Corchado, E. (eds) International Joint Conference SOCO’17-CISIS’17-ICEUTE’17 León, Spain, September 6–8, 2017, Proceeding. SOCO ICEUTE CISIS 2017 2017 2017. Advances in Intelligent Systems and Computing, vol 649. Springer, Cham. https://doi.org/10.1007/978-3-319-67180-2_3
Download citation
DOI: https://doi.org/10.1007/978-3-319-67180-2_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-67179-6
Online ISBN: 978-3-319-67180-2
eBook Packages: EngineeringEngineering (R0)