A Cellular Automaton Based System for Traffic Analyses on the Roundabout | SpringerLink
Skip to main content

A Cellular Automaton Based System for Traffic Analyses on the Roundabout

  • Conference paper
  • First Online:
Computational Collective Intelligence (ICCCI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10449))

Included in the following conference series:

Abstract

The paper presents an analysis of the impact of road conditions, the distance between vehicles and the number of pedestrians on the roundabout capacity. The study was based on a developed cellular automaton (CA) model and the implemented simulation system. The developed CA model extends the basic traffic model with a braking mechanism. It also reflects the actual technical conditions of vehicles (acceleration and braking depending on the dimensions and functions of the vehicle, as well as the driving at a roundabout of different speeds that are appropriate for the size of the vehicle). The study was based on the example of a two-lane roundabout with four two-lane inlet roads.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Webpage Created (2013). https://nextstl.com/2013/10/mythbusters-tackles-four-way-stop-v-roundabout-traffic-throughput/. Accessed Jan 2017

  2. Transportation Research Board of the National Acad: National Cooperative Highway Research Program Report 572 - Roundabouts in the Unites States (2007)

    Google Scholar 

  3. Leaf, W.A., Preusser, D.F.: Literature review on vehicle travel speeds and pedestrian injuries, US Department of Transportation, National Highway Traffic Safety Administration (1999)

    Google Scholar 

  4. Brude, U., Larsson, J.: What roundabout design provides the highest possible safety? Nordic Road Transp. Res. 12(2), 17–21 (2000)

    Google Scholar 

  5. Macioszek, E.: Relationship between vehicle stream in the circular roadway of a one-lane roundabout and traffic volume on the roundabout at peak hour. In: Mikulski, J. (ed.) TST 2014. CCIS, vol. 471, pp. 110–119. Springer, Heidelberg (2014). doi:10.1007/978-3-662-45317-9_12

    Chapter  Google Scholar 

  6. Macioszek, E., Sierpiński, G., Czapkowski, L.: Problems and issues with running the cycle traffic through the roundabouts. In: Mikulski, J. (ed.) TST 2010. CCIS, vol. 104, pp. 107–114. Springer, Heidelberg (2010). doi:10.1007/978-3-642-16472-9_11

    Chapter  Google Scholar 

  7. Macioszek, E.: Analysis of significance of differences between psychotechnical parameters for drivers at the entries to one-lane and turbo roundabouts in Poland. In: Sierpiński, G. (ed.) Intelligent Transport Systems and Travel Behaviour. AISC, vol. 505, pp. 149–161. Springer, Cham (2017). doi:10.1007/978-3-319-43991-4_13

    Chapter  Google Scholar 

  8. Wang, R., Liu, M.: A realistic cellular automata model to simulate traffic flow at urban roundabouts. In: Sunderam, V.S., van Albada, G.D., Sloot, P.M.A., Dongarra, J.J. (eds.) ICCS 2005. LNCS, vol. 3515, pp. 420–427. Springer, Heidelberg (2005). doi:10.1007/11428848_56

    Chapter  Google Scholar 

  9. Nagel, K., Schreckenberg, M.: A cellular automata model for freeway traffic. J. de Phys. I 2, 2221–2229 (1992)

    Google Scholar 

  10. Chowdhury, D., Santen, L., Schadschneider, A.: Statistical physics of vehicular traffic and some related systems. Phys. Rep. 329, 199–329 (2000)

    Article  MathSciNet  Google Scholar 

  11. Fellendorf, M.: VISSIM: a microscopic simulation tool to evaluate actuated signal control including bus priority. In: 64th Institute Transportation Engineers (ITE) Annual Meeting, Technical paper, Session 32, Dallas, TX, pp. 1–9 (1994)

    Google Scholar 

  12. Barcelo, J., Ferrer, J.L., Montero, L.: AIMSUN: Advanced Interactive Microscopic Simulator for Urban Networks, User‘s Manual, Departament d ‘Estadística i Investigació Operativa, UPC (1997)

    Google Scholar 

  13. Krajzewicz, D., Erdmann, J., Behrisch, M., Bieker, L.: Recent development and applications of SUMO-simulation of urban mobility. Int. J. Adv. Syst. Meas. 5, 128–138 (2012)

    Google Scholar 

  14. Popescu, M.C., Ranea, C., Grigoriu, M.: Solutions for traffic lights intersections control. In: Proceedings of the 10th WSEAS (2010)

    Google Scholar 

  15. Han, X., Sun, H.: The implementation of traffic signal light controlled by PLC. J. Chang. Inst. Opt. Fine Mech. 4, 029 (2003)

    Google Scholar 

  16. Kołopieńczyk, M., Andrzejewski, G., Zając, W.: Block programming technique in traffic control. In: Mikulski, J. (ed.) TST 2013. CCIS, vol. 395, pp. 75–80. Springer, Heidelberg (2013). doi:10.1007/978-3-642-41647-7_10

    Chapter  Google Scholar 

  17. Jaszczak, S., Małecki, K.: Hardware and software synthesis of exemplary crossroads in a modular programmable controller. Prz. Elektrotech. 89(11), 121–124 (2013)

    Google Scholar 

  18. Sierpiński, G.: Theoretical model and activities to change the modal split of traffic. In: Mikulski, J. (ed.) TST 2012. CCIS, vol. 329, pp. 45–51. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34050-5_6

    Chapter  Google Scholar 

  19. Sierpiński, G.: Travel behaviour and alternative modes of transportation. In: Mikulski, J. (ed.) TST 2011. CCIS, vol. 239, pp. 86–93. Springer, Heidelberg (2011). doi:10.1007/978-3-642-24660-9_10

    Chapter  Google Scholar 

  20. Karoń, G., Mikulski, J.: Transportation systems modelling as planning, organisation and management for solutions created with ITS. In: Mikulski, J. (ed.) TST 2011. CCIS, vol. 239, pp. 277–290. Springer, Heidelberg (2011). doi:10.1007/978-3-642-24660-9_32

    Chapter  Google Scholar 

  21. Małecki, K., Pietruszka, P., Iwan, S.: Comparative analysis of selected algorithms in the process of optimization of traffic lights. In: Nguyen, N.T., Tojo, S., Nguyen, L.M., Trawiński, B. (eds.) ACIIDS 2017. LNCS, vol. 10192, pp. 497–506. Springer, Cham (2017). doi:10.1007/978-3-319-54430-4_48

    Chapter  Google Scholar 

  22. Webpage: http://traffic-simulation.de. Accessed Dec 2016

  23. Nagel, K., Wolf, D.E., Wagner, P., Simon, P.M.: Two-lane traffic rules for cellular automata: a systematic approach. Phys. Rev. E 58(2), 1425–1437 (1998)

    Article  Google Scholar 

  24. Biham, O., Middleton, A.A., Levine, D.: Phys. Rev. A 46, 6124 (1992)

    Article  Google Scholar 

  25. Chowdhury, D., Schadschneider, A.: Self-organization of traffic jams in cities: effects of stochastic dynamics and signal periods. Phys. Rev. E 59, 1311–1314 (1999)

    Article  Google Scholar 

  26. Małecki, K., Iwan, S.: Development of cellular automata for simulation of the crossroads model with a traffic detection system. In: Mikulski, J. (ed.) TST 2012. CCIS, vol. 329, pp. 276–283. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34050-5_31

    Chapter  Google Scholar 

  27. Hartman, D.: Head leading algorithm for urban traffic modelling. Positions 2, 1 (2004)

    Google Scholar 

  28. Gwizdałła, T.M., Grzebielucha, S.: The traffic flow through different form of intersections. In: International Conference on Computer Information Systems and Industrial Management Applications (CISIM), pp. 299–304. IEEE (2010)

    Google Scholar 

  29. Belz, N.P., Aultman-Hall, L., Montague, J.: Influence of priority taking and abstaining at single-lane roundabouts using cellular automata. Transp. Res. Part C: Emerg. Technol. 69, 134–149 (2016)

    Article  Google Scholar 

  30. Wang, R., Ruskin, H.: Modeling traffic flow at a single-lane urban roundabout. Comput. Phys. Commun. 147, 570–576 (2002)

    Article  Google Scholar 

  31. Lakouari, N., Ez-Zahraouy, H., Benyoussef, A.: Traffic flow behaviour at a single lane roundabout as compared to traffic circle. Phys. Lett. Sect. A: Gen. At. Solid State Phys. 378(43), 3169–3176 (2014)

    Article  Google Scholar 

  32. Belz, N.P., Aultman-Hall, L., Lee, B.H.Y., Gårder, P.E.: An event-based framework for non-compliant driver behavior at single-lane roundabouts. Transp. Res. Rec.: J. Transp. Res. Board Nat. Acad. 2402, 38–46 (2014). Washington, DC

    Article  Google Scholar 

  33. Wagner, P., Nagel, K., Wolf, D.: Realistic multilane traffic rule for cellular automata. Phys. A 234, 687–698 (1997)

    Article  Google Scholar 

  34. Wang, R., Ruskin, H.J.: Modelling traffic flow at multi-lane urban roundabouts. Int. J. Mod. Phys. C 17(5), 693–710 (2006)

    Article  Google Scholar 

  35. Schroeder, B., Rouphail, N., Salamati, K., Bugg, Z.: Effect of pedestrian impedance on vehicular capacity at multilane roundabouts with consideration of crossing treatments. Transp. Res. Rec.: J. Transp. Res. Board Nat. Acad. 2312(10), 14–24 (2012)

    Article  Google Scholar 

  36. Was, J.: Cellular automata model of pedestrian dynamics for normal and evacuation conditions. In: Proceedings of the 5th International Conference on Intelligent Systems Design and Applications, ISDA 2005, pp. 154–159. IEEE (2005)

    Google Scholar 

  37. Wąs, J., Gudowski, B., Matuszyk, P.J.: New cellular automata model of pedestrian representation. In: El Yacoubi, S., Chopard, B., Bandini, S. (eds.) ACRI 2006. LNCS, vol. 4173, pp. 724–727. Springer, Heidelberg (2006). doi:10.1007/11861201_88

    Chapter  Google Scholar 

  38. Webpage: http://prawko-torun.pl/droga-zatrzymania-a-czas-reakcji-kierowcy. Accessed Nov 2016

  39. Bułka, D., Walczak, S., Wolak, S.: Braking process - legal and technical aspects in terms of simulation and analysis. In: Proceedings of the 3rd Conference on Rozwój techniki samochodowej a ubezpieczenia komunikacyjne (2006). (in Polish)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Małecki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Małecki, K., Wątróbski, J., Wolski, W. (2017). A Cellular Automaton Based System for Traffic Analyses on the Roundabout. In: Nguyen, N., Papadopoulos, G., Jędrzejowicz, P., Trawiński, B., Vossen, G. (eds) Computational Collective Intelligence. ICCCI 2017. Lecture Notes in Computer Science(), vol 10449. Springer, Cham. https://doi.org/10.1007/978-3-319-67077-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67077-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67076-8

  • Online ISBN: 978-3-319-67077-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics