Abstract
The paper presents preliminary research conducted to assess the potential of biometric methods fusion for continuous user verification. In this article a novel computer user identity verification method based on keystroke dynamics and knuckle images analysis is introduced. In the proposed solution the user verification is performed by means of classification. The introduced approach was tested experimentally using a database which comprises of keystroke dynamics data and knuckle images. The results indicate that the introduced methods fusion performs better than the single biometric approaches.
Similar content being viewed by others
References
Banerjee, S.P., Woodard, D.L.: Biometric authentication and identification using keystroke dynamics: a survey. J. Pattern Recogn. Res. 7, 116–139 (2012)
Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Trans. Pattern Anal. Mach. Intell. 24, 509–522 (2002)
Ng, C.-C., Yap, M.H., Costen, N., Li, B.: Automatic wrinkle detection using hybrid hessian filter. In: Cremers, D., Reid, I., Saito, H., Yang, M.-H. (eds.) ACCV 2014. LNCS, vol. 9005, pp. 609–622. Springer, Cham (2015). doi:10.1007/978-3-319-16811-1_40
Doroz, R., Porwik, P., Safaverdi, H.: The new multilayer ensemble classifier for verifying users based on keystroke dynamics. In: Núñez, M., Nguyen, N.T., Camacho, D., Trawiński, B. (eds.) ICCCI 2015. LNCS (LNAI), vol. 9330, pp. 598–605. Springer, Cham (2015). doi:10.1007/978-3-319-24306-1_58
Doroz, R., et al.: A new personal verification technique using finger-knuckle imaging. In: Nguyen, N.-T., Manolopoulos, Y., Iliadis, L., Trawiński, B. (eds.) ICCCI 2016. LNCS (LNAI), vol. 9876, pp. 515–524. Springer, Cham (2016). doi:10.1007/978-3-319-45246-3_49
Fager, M., Morris, K.: Quantifying the limits of fingerprint variability. Forensic Sci. Int. 254, 87–99 (2015)
Ferrer, M.A., Travieso, C.M., Alonso, J.B.: Using hand knuckle texture for biometric identifications. IEEE Aerosp. Electron. Syst. Mag. 21(6), 23–27 (2006)
Iwahori, Y., Hattori, A., Adachi, Y., Bhuyan, M.K., Woodham, R.J., Kasugai, K.: Automatic detection of polyp using Hessian Filter and HOG features. Procedia Comput. Sci. 60(1), 730–739 (2015)
Kasprowski, P.: The impact of temporal proximity between samples on eye movement biometric identification. In: Saeed, K., Chaki, R., Cortesi, A., Wierzchoń, S. (eds.) CISIM 2013. LNCS, vol. 8104, pp. 77–87. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40925-7_8
Koprowski, R., Teper, S.J., Weglarz, B., Wylegała, E., Krejca, M., Wróbel, Z.: Fully automatic algorithm for the analysis of vessels in the angiographic image of the eye fundus. Biomed. Eng. Online 11, 35 (2012)
Kumar, A., Ravikanth, C.: Personal authentication using finger knuckle surface. IEEE Trans. Inf. Forensics Secur. 4(1), 98–110 (2009)
Morales, A., Travieso, C.M., Ferrer, M.A., Alonso, J.B.: Improved finger-knuckle-print authentication based on orientation enhancement. Electron. Lett. 47(6), 380–382 (2011)
Porwik, P., Doroz, R.: Self-adaptive biometric classifier working on the reduced dataset. In: Polycarpou, M., Carvalho, A.C.P.L.F., Pan, J.-S., Woźniak, M., Quintian, H., Corchado, E. (eds.) HAIS 2014. LNCS (LNAI), vol. 8480, pp. 377–388. Springer, Cham (2014). doi:10.1007/978-3-319-07617-1_34
Porwik, P., Doroz, R., Wrobel, K.: A new signature similarity measure. In: Proceedings of the 2009 World Congress on Nature and Biologically Inspired Computing, NABIC 2009, pp. 1022–1027 (2009)
Raiyn, J.: A survey of cyber attack detection strategies. Int. J. Secur. Appl. 8(1), 247–256 (2014)
Salem, M.B., Hershkop, S., Stolfo, S.J.: A survey of insider attack detection research. Adv. Inf. Secur. 39, 69–90 (2008)
Usha, K., Ezhilarasan, M.: Finger knuckle biometrics - a review. Comput. Electr. Eng. 45, 249–259 (2015)
Wesołowski, T.E., Porwik, P.: Keystroke data classification for computer user profiling and verification. In: Núñez, M., Nguyen, N.T., Camacho, D., Trawiński, B. (eds.) ICCCI 2015. LNCS, vol. 9330, pp. 588–597. Springer, Cham (2015). doi:10.1007/978-3-319-24306-1_57
Wesołowski, T.E., Porwik, P.: Computer user profiling based on keystroke analysis. In: Chaki, R., Cortesi, A., Saeed, K., Chaki, N. (eds.) Advanced Computing and Systems for Security. AISC, vol. 395, pp. 3–13. Springer, New Delhi (2016). doi:10.1007/978-81-322-2650-5_1
Wesolowski, T.E., Porwik, P., Doroz, R.: Electronic health record security based on ensemble classification of keystroke dynamics. Appl. Artif. Intell. 30, 521–540 (2016)
Woodard, D.L., Flynn, P.J.: Finger surface as a biometric identifier. Comput. Vis. Image Underst. 100(3), 357–384 (2005)
Xiong, M., Yang, W., Sun, C.: Finger-knuckle-print recognition using LGBP. In: Liu, D., Zhang, H., Polycarpou, M., Alippi, C., He, H. (eds.) ISNN 2011. LNCS, vol. 6676, pp. 270–277. Springer, Heidelberg (2011). doi:10.1007/978-3-642-21090-7_32
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Safaverdi, H., Wesolowski, T.E., Doroz, R., Wrobel, K., Porwik, P. (2017). Computer User Verification Based on Typing Habits and Finger-Knuckle Analysis. In: Nguyen, N., Papadopoulos, G., Jędrzejowicz, P., Trawiński, B., Vossen, G. (eds) Computational Collective Intelligence. ICCCI 2017. Lecture Notes in Computer Science(), vol 10449. Springer, Cham. https://doi.org/10.1007/978-3-319-67077-5_16
Download citation
DOI: https://doi.org/10.1007/978-3-319-67077-5_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-67076-8
Online ISBN: 978-3-319-67077-5
eBook Packages: Computer ScienceComputer Science (R0)