Agent-Based Modelling and Simulation Applied to Environmental Management | SpringerLink
Skip to main content

Agent-Based Modelling and Simulation Applied to Environmental Management

  • Chapter
  • First Online:
Simulating Social Complexity

Abstract

The purpose of this chapter is to summarize how agent-based modelling and simulation (ABMS) is being used in the area of environmental management. With the science of complex systems now being widely recognized as an appropriate one to tackle the main issues of ecological management, ABMS is emerging as one of the most promising approaches. To avoid any confusion and disbelief about the actual usefulness of ABMS, the objectives of the modelling process have to be unambiguously made explicit. It is still quite common to consider ABMS as mostly useful to deliver recommendations to a lone decision-maker, yet a variety of different purposes have progressively emerged, from gaining understanding through raising awareness, facilitating communication, promoting coordination or mitigating conflicts. Whatever the goal, the description of an agent-based model remains challenging. Some standard protocols have been recently proposed, but still a comprehensive description requires a lot of space, often too much for the maximum length of a paper authorized by a scientific journal. To account for the diversity and the swelling of ABMS in the field of ecological management, a review of recent publications based on a lightened descriptive framework is proposed. The objective of the descriptions is not to allow the replication of the models but rather to characterize the types of spatial representation, the properties of the agents and the features of the scenarios that have been explored and also to mention which simulation platforms were used to implement them (if any). This chapter concludes with a discussion of recurrent questions and stimulating challenges currently faced by ABMS for environmental management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://jasss.soc.surrey.ac.uk/4/2/contents.html

References

  • Abel, T. (1998). Complex adaptive systems, evolutionism, and ecology within anthropology: Interdisciplinary research for understanding cultural and ecological dynamics. Georgia Journal of Ecological Anthropology, 2, 6–29.

    Article  Google Scholar 

  • Abrami, G. (2004). Niveaux d’organisation dans la modélisation multi-agent pour la gestion de ressources renouvelables. Application à la mise en oeuvre de règles collectives de gestion de l’eau agricole dans la basse-vallée de la Drôme. Montpellier: Ecole Nationale du Génie Rural, des Eaux et Forêts.

    Google Scholar 

  • Allen, T. F. H., & Starr, T. B. (1982). Hierarchy: Perspectives for ecological complexity. Chicago: University of Chicago Press.

    Google Scholar 

  • An, L., Linderman, M., Qi, J., Shortridge, A., & Liu, J. (2005). Exploring complexity in a human–environment system: An agent-based spatial model for multidisciplinary and multiscale integration. Annals of the Association of American Geographers, 95(1), 54–79.

    Article  Google Scholar 

  • Anwar, S. M., Jeanneret, C., Parrott, L., & Marceau, D. (2007). Conceptualization and implementation of a multi-agent model to simulate whale-watching tours in the St. Lawrence estuary in Quebec, Canada. Environmental Modelling and Software, 22(12), 1775–1787.

    Article  Google Scholar 

  • Auger, P., Charles, S., Viala, M., & Poggiale, J.-C. (2000). Aggregation and emergence in ecological modelling: Integration of ecological levels. Ecological Modelling, 127, 11–20.

    Article  Google Scholar 

  • Bagni, R., Berchi, R., & Cariello, P. (2002). A comparison of simulation models applied to epidemics. Journal of Artificial Societies and Social Simulation, 5(3), 5.

    Google Scholar 

  • Bah, A., Touré, I., Le Page, C., Ickowicz, A., & Diop, A. T. (2006). An agent-based model to understand the multiple uses of land and resources around drilling in Sahel. Mathematical and Computer Modelling, 44(5–6), 513–534.

    Article  MATH  Google Scholar 

  • Bakam, I., Kordon, F., Le Page, C., & Bousquet, F. (2001). Formalization of a multi-agent model using colored petri nets for the study of an hunting management system. In Lecture notes in computer science (Vol. 1871, pp. 123–132). Berlin: Springer.

    Google Scholar 

  • Balmann, A. (1997). Farm based modelling of regional structural change: A cellular automata approach. European Review of Agricultural Economics, 24(1), 85–108.

    Article  Google Scholar 

  • Barnaud, C., Promburom, T., Trébuil, G., & Bousquet, F. (2007). An evolving simulation and gaming process for adaptive resource management in the highlands of northern Thailand. Simulation and Gaming, 38(3), 398–420.

    Article  Google Scholar 

  • Barreteau, O., & Bousquet, F. (2000). SHADOC: A multi-agent model to tackle viability of irrigated systems. Annals of Operations Research, 94, 139–162.

    Article  MATH  Google Scholar 

  • Barreteau, O., Bousquet, F., Millier, C., & Weber, J. (2004). Suitability of multi-agent simulations to study irrigated system viability: Application to case studies in the Senegal River Valley. Agricultural Systems, 80, 255–275.

    Article  Google Scholar 

  • Batten, D. (2007). Are some human ecosystems self-defeating? Environmental Modelling and Software, 22, 649–655.

    Article  Google Scholar 

  • Becu, N., Perez, P., Walker, A., Barreteau, O., & Le Page, C. (2003). Agent based simulation of a small catchment water management in northern Thailand: Description of the CATCHSCAPE model. Ecological Modelling, 170(2-3), 319–331.

    Article  Google Scholar 

  • Berger, T. (2001). Agent-based spatial models applied to agriculture: A simulation tool for technology diffusion, resource use changes and policy analysis. Agricultural Economics, 25, 245–260.

    Article  Google Scholar 

  • Berger, T., & Schreinemachers, P. (2006). Creating agents and landscapes for multiagent systems from random samples. Ecology and Society, 11(2), 19. http://www.ecologyandsociety.org/vol11/iss2/art19/

  • Berger, T., Schreinemachers, P., & Woelcke, J. (2006). Multi-agent simulation for the targeting of development policies in less-favored areas. Agricultural Systems, 88, 28–43.

    Article  Google Scholar 

  • Berkes, F., & Folke, C. (Eds.). (1998). Linking ecological and social systems: Management practices and social mechanisms for building resilience. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Bian, L. (2004). A conceptual framework for an individual-based spatially explicit epidemiological model. Environment and Planning B: Planning and Design, 31(3), 381–395.

    Article  Google Scholar 

  • Bishop, I., & Gimblett, R. (2000). Management of recreational areas: GIS, autonomous agents, and virtual reality. Environment and Planning B: Planning and Design, 27(3), 423–435.

    Article  Google Scholar 

  • Bithell, M., & Macmillan, W. D. (2007). Escape from the cell: Spatially explicit modelling with and without grids. Ecological Modelling, 200, 59–78.

    Article  Google Scholar 

  • Bonaudo, T., Bommel, P., & Tourrand, J. F. (2005). Modelling the pioneers fronts of the transamazon highway region. In Proceedings of CABM-HEMA-SMAGET 2005, joint conference on multi-agent modeling for environmental management, Bourg St Maurice, Les Arcs, France, 21-25 March 2005. http://smaget.lyon.cemagref.fr/contenu/SMAGET%20proc/PAPERS/BonaudoBommelTourrand.pdf

  • Bousquet, F. (2001). Modélisation d’accompagnement. Simulations multi-agents et gestion des ressources naturelles et renouvelables. Unpublished Habilitation à Diriger des Recherches, Lyon I University, Lyon, France.

    Google Scholar 

  • Bousquet, F., Barreteau, O., d’Aquino, P., Etienne, M., Boissau, S., Aubert, S., et al. (2002). Multi-agent systems and role games: Collective learning processes for ecosystem management. In M. A. Janssen (Ed.), Complexity and ecosystem management: The theory and practice of multi-agent systems (pp. 248–285). Cheltenham: Edward Elgar Publishing.

    Google Scholar 

  • Bousquet, F., Barreteau, O., Le Page, C., Mullon, C., & Weber, J. (1999). An environmental modelling approach: The use of multi-agents simulations. In F. Blasco & A. Weill (Eds.), Advances in environmental and ecological modelling (pp. 113–122). Paris: Elsevier.

    Google Scholar 

  • Bousquet, F., & Le Page, C. (2004). Multi-agent simulations and ecosystem management: A review. Ecological Modelling, 176, 313–332.

    Article  Google Scholar 

  • Bousquet, F., Le Page, C., Bakam, I., & Takforyan, A. (2001). Multiagent simulations of hunting wild meat in a village in eastern Cameroon. Ecological Modelling, 138, 331–346.

    Article  Google Scholar 

  • Bousquet, F., Trébuil, G., & Hardy, B. (Eds.). (2005). Companion modeling and multi-agent systems for integrated natural resources management in Asia. Los Baños, Philippines: International Rice Research Institute.

    Google Scholar 

  • Bradbury, R. (2002). Futures, prediction and other foolishness. In M. A. Janssen (Ed.), Complexity and ecosystem management: The theory and practice of multi-agent systems (pp. 48–62). Cheltenham: Edward Elgar Publishing.

    Google Scholar 

  • Brown, D. G., Page, S. E., Riolo, R., & Rand, W. (2004). Agent-based and analytical modeling to evaluate the effectiveness of greenbelts. Environmental Modelling and Software, 19, 1097–1109.

    Article  Google Scholar 

  • Caplat, P., Lepart, J., & Marty, P. (2006). Landscape patterns and agriculture: Modelling the long-term effects of human practices on Pinus sylvestris spatial dynamics (Causse Mejean, France). Landscape Ecology, 21(5), 657–670.

    Article  Google Scholar 

  • Carley, K. M., et al. (2006). BioWar: Scalable agent-based model of bioattacks. IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans, 36(2), 252–265.

    Article  Google Scholar 

  • Carpenter, S., Brock, W., & Hanson, P. (1999). Ecological and social dynamics in simple models of ecosystem management. Conservation Ecology, 3(2), 4.

    Article  Google Scholar 

  • Castella, J.-C., Boissau, S., Trung, T. N., & Quang, D. D. (2005). Agrarian transition and lowland–upland interactions in mountain areas in northern Vietnam: Application of a multi-agent simulation model. Agricultural Systems, 86, 312–332.

    Article  Google Scholar 

  • Castella, J.-C., Trung, T. N., & Boissau, S. (2005). Participatory simulation of land-use changes in the Northern Mountains of Vietnam: The combined use of an agent-based model, a role-playing game, and a geographic information system. Ecology and Society, 10(1), 27.

    Article  Google Scholar 

  • Castella, J.-C., & Verburg, P. H. (2007). Combination of process-oriented and pattern-oriented models of land use change in a mountain area of Vietnam. Ecological Modelling, 202(3-4), 410–420.

    Article  Google Scholar 

  • ComMod. (2003). Our companion modelling approach. Journal of Artificial Societies and Social Simulation, 6(2), http://jasss.soc.surrey.ac.uk/6/2/1.html

  • Courdier, R., Guerrin, F., Andriamasinoro, F. H., & Paillat, J. M. (2002). Agent-based simulation of complex systems: Application to collective management of animal wastes. Journal of Artificial Societies and Social Simulation, 5(3), http://jasss.soc.surrey.ac.uk/5/3/4.html

  • D’Aquino, P., Le Page, C., Bousquet, F., & Bah, A. (2003). Using self-designed role-playing games and a multi-agent system to empower a local decision-making process for land use management: The SelfCormas experiment in Senegal. Journal of Artificial Societies and Social Simulation, 6(3), http://jasss.soc.surrey.ac.uk/6/3/5.html

  • David, N., Fachada, N., & Rosa, A. C. (2017). Verifying and validating simulations. doi:https://doi.org/10.1007/978-3-319-66948-9_9.

    Google Scholar 

  • Deadman, P., Robinson, D., Moran, E., & Brondízio, E. (2004). Colonist household decisionmaking and land-use change in the Amazon rainforest: An agent-based simulation. Environment and Planning B: Planning and Design, 31(5), 693–709.

    Article  Google Scholar 

  • DeAngelis, D. L., & Gross, L. J. (Eds.). (1992). Individual-based models and approaches in ecology. New York: Chapman and Hall.

    Google Scholar 

  • Dunham, J. B. (2005). An agent-based spatially explicit epidemiological model in MASON. Journal of Artificial Societies and Social Simulation, 9(1), http://jasss.soc.surrey.ac.uk/9/1/3.html

  • Elliston, L., & Beare, S. (2006). Managing agricultural pest and disease incursions: An application of agent-based modelling. In P. Perez & D. Batten (Eds.), Complex science for a complex world: Exploring human ecosystems with agents (pp. 177–189). Canberra: ANU E Press.

    Google Scholar 

  • Epstein, J. M., & Axtell, R. L. (1996). Growing artificial societies: Social science from the bottom up. Washington, D.C.: Brookings Institution Press.

    Google Scholar 

  • Etienne, M. (Ed.). (2011). Companion modelling: A participatory approach to support sustainable development. Versailles: Quae.

    Google Scholar 

  • Etienne, M., Le Page, C., & Cohen, M. (2003). A Step-by-step approach to building land management scenarios based on multiple viewpoints on multi-agent system simulations. Journal of Artificial Societies and Social Simulation, 6(2), http://jasss.soc.surrey.ac.uk/6/2/2.html

  • Evans, T. P., & Kelley, H. (2004). Multi-scale analysis of a household level agent-based model of landcover change. Journal of Environmental Management, 72, 57–72.

    Article  Google Scholar 

  • Ferber, J., & Gutknecht, O. (1998). A meta-model for the analysis and design of organizations in multi-agent systems. In Y. Demazeau (Ed.), Proceedings of the 3rd International Conference on Multi-Agent Systems (ICMAS ’98), Cité des Sciences – La Villette, Paris, France, July 4-7, 1998 (pp. 128–135). IEEE: Los Alamos, NM.

    Google Scholar 

  • Feuillette, S., Bousquet, F., & Le Goulven, P. (2003). SINUSE: A multi-agent model to negotiate water demand management on a free access water table. Environmental Modelling and Software, 18, 413–427.

    Article  Google Scholar 

  • Galán, J. M., Izquierdo, L. R., Izquierdo, S. S., Santos, J. L., del Olmo, R., & López-Paredes, A. (2017). doi:https://doi.org/10.1007/978-3-319-66948-9_7.

    Google Scholar 

  • Galvin, K. A., Thornton, P. K., Roque de Pinho, J., Sunderland, J., & Boone, R. B. (2006). Integrated modeling and its potential for resolving conflicts between conservation and people in the rangelands of East Africa. Human Ecology, 34(2), 155–183.

    Article  Google Scholar 

  • Gimblett, R. (Ed.). (2002). Integrating geographic information systems and agent-based modeling techniques for understanding social and ecological processes, Santa Fe Institute Studies in the Sciences of Complexity. Oxford: Oxford University Press.

    Google Scholar 

  • Grimm, V., Berger, U., Bastiansen, F., Eliassen, S., Ginot, V., Giske, J., et al. (2006). A standard protocol for describing individual-based and agent-based models. Ecological Modelling, 198, 115–126.

    Article  Google Scholar 

  • Grimm, V., & Railsback, S. F. (2005). Individual-based modeling and ecology. Princeton, NJ: Princeton University Press.

    Book  MATH  Google Scholar 

  • Gross, J. E., McAllister, R. R. J., Abel, N., Stafford Smith, D. M., & Maru, Y. (2006). Australian rangelands as complex adaptive systems: A conceptual model and preliminary results. Environmental Modelling and Software, 21(9), 1264–1272.

    Article  Google Scholar 

  • Gunderson, L. H., & Holling, C. S. (2002). Panarchy: Understanding transformations in human and natural systems. Washington, D.C.: Island Press.

    Google Scholar 

  • Gurung, T. R., Bousquet, F., & Trébuil, G. (2006). Companion modeling, conflict resolution, and institution building: Sharing irrigation water in the Lingmuteychu watershed, Bhutan. Ecology and Society, 11(2), 36.

    Article  Google Scholar 

  • Haffner, Y., & Gramel, S. (2001). Modelling strategies for water supply companies to deal with nitrate pollution. Journal of Artificial Societies and Social Simulation, 4(3), http://jasss.soc.surrey.ac.uk/4/3/11.html

  • Hales, D., Rouchier, J., & Edmonds, B. (2003). Model-to-model analysis. Journal of Artificial Societies and Social Simulation, 6(4), http://jasss.soc.surrey.ac.uk/6/4/5.html

  • Happe, K., Kellermann, K., & Balmann, A. (2006). Agent-based analysis of agricultural policies: An Illustration of the agricultural policy simulator AgriPoliS, its adaptation and behavior. Ecology and Society, 11(1), 49.

    Article  Google Scholar 

  • Hare, M., & Deadman, P. (2004). Further towards a taxonomy of agent-based simulation models in environmental management. Mathematics and Computers in Simulation, 64, 25–40.

    Article  MathSciNet  MATH  Google Scholar 

  • Hemelrijk, C. (2017). Simulating complexity of animal social behaviour. doi:https://doi.org/10.1007/978-3-319-66948-9_24.

    Google Scholar 

  • Hoffmann, M., Kelley, H., & Evans, T. (2002). Simulating land-cover change in South-Central Indiana: An agent-based model of deforestation and afforestation. In M. A. Janssen (Ed.), Complexity and ecosystem management: The theory and practice of multi-agent systems (pp. 218–247). Cheltenham: Edward Elgar Publishing.

    Google Scholar 

  • Holling, C. S. (1986). The resilience of terrestrial ecosystems; local surprise and global change. In W. C. Clark & R. E. Munn (Eds.), Sustainable development of the biosphere (pp. 292–317). Cambridge: Cambridge University Press.

    Google Scholar 

  • Holling, C. S. (2001). Understanding the complexity of economic, ecological, and social systems. Ecosystems, 4, 390–405.

    Article  Google Scholar 

  • Holling, C. S. (2004). From complex regions to complex worlds. Ecology and Society, 9(1), 11.

    Article  MathSciNet  Google Scholar 

  • Huigen, M. G. A. (2004). First principles of the MameLuke multi-actor modelling framework for land use change, illustrated with a Philippine case study. Journal of Environmental Management, 72, 5–21.

    Article  Google Scholar 

  • Huigen, M. G. A., Overmars, K. P., & de Groot, W. T. (2006). Multiactor modeling of settling decisions and behavior in the San Mariano watershed, the Philippines: A first application with the MameLuke framework. Ecology and Society, 11(2), 33.

    Article  Google Scholar 

  • Huston, M., DeAngelis, D. L., & Post, W. (1988). New computer models unify ecological theory. BioScience, 38(10), 682–691.

    Article  Google Scholar 

  • Janssen, M. A. (2001). An exploratory integrated model to assess management of lake eutrophication. Ecological Modelling, 140, 111–124.

    Article  Google Scholar 

  • Janssen, M. A. (Ed.). (2002). Complexity and ecosystem management: The theory and practice of multi-agent systems. Cheltenham: Edward Elgar Publishing.

    Google Scholar 

  • Janssen, M. A. (2007). Coordination in irrigation systems: An analysis of the Lansing–Kremer model of Bali. Agricultural Systems, 93, 170–190.

    Article  Google Scholar 

  • Janssen, M. A., Anderies, J. M., Stafford Smith, M., & Walker, B. H. (2002). Implications of spatial heterogeneity of grazing pressure on the resilience of rangelands. In M. A. Janssen (Ed.), Complexity and ecosystem management: The theory and practice of multi-agent systems (pp. 103–126). Cheltenham: Edward Elgar Publishing.

    Google Scholar 

  • Janssen, M. A., & Ostrom, E. (2006). Empirically based, agent-based models. Ecology and Society, 11(2).

    Google Scholar 

  • Janssen, M. A., Walker, B. H., Langridge, J., & Abel, N. (2000). An adaptive agent model for analysing co-evolution of management and policies in a complex rangeland system. Ecological Modelling, 131(2-3), 249–268.

    Article  Google Scholar 

  • Jepsen, J. U., Topping, C. J., Odderskær, P., & Andersen, P. N. (2005). Evaluating consequences of land-use strategies on wildlife populations using multiple-species predictive scenarios. Agriculture, Ecosystems and Environment, 105, 581–594.

    Article  Google Scholar 

  • Judson, O. P. (1994). The rise of the individual-based model in ecology. Trends in Ecology and Evolution, 9(1), 9–14.

    Article  Google Scholar 

  • Kawata, M., & Toquenaga, Y. (1994). From artificial individuals to global patterns. Trends in Ecology and Evolution, 9(11), 417–421.

    Article  Google Scholar 

  • Kinzig, A. P., et al. (2006). Resilience and regime shifts: Assessing cascading effects. Ecology and Society, 11(1), 20.

    Article  Google Scholar 

  • Krywkow, J., Valkering, P., Rotmans, J., & van der Veen, A. (2002, June 24–27). Agent-based and integrated assessment modelling for incorporating social dynamics in the management of the Meuse in the Dutch Province of Limburg. In A.E. Rizzoli & A.J. Jakeman (Eds.), Integrated assessment and decision support: Proceedings of the First Biennial Meeting of the International Environmental Modelling and Software Society iEMSs, University of Lugano, Switzerland (Vol. 2, pp. 263–268). Manno: iEMSs.

    Google Scholar 

  • Lansing, J. S., & Kremer, J. N. (1993). Emergent properties of Balinese water temple networks: Coadaptation on a rugged fitness landscape. American Anthropologist, 95(1), 97–114.

    Article  Google Scholar 

  • Le Bars, M., Attonaty, J.-M., Ferrand, N., & Pinson, S. (2005). An agent-based simulation testing the impact of water allocation on farmers’ collective behaviors. Simulation, 81(3), 223–235.

    Article  Google Scholar 

  • Levin, S. A. (1998). Ecosystems and the biosphere as complex adaptive systems. Ecosystems, 1, 431–436.

    Article  Google Scholar 

  • Levin, S. A. (1999). Towards a science of ecological management. Conservation Ecology, 3(2), 6.

    Article  MathSciNet  Google Scholar 

  • Lim, K., Deadman, P. J., Moran, E., Brondizio, E., & McCracken, S. (2002). Agent-based simulations of household decision making and land use change near Altamira, Brazil. In R. Gimblett (Ed.), Integrating geographic information systems and agent-based modeling techniques for understanding social and ecological processes, Santa Fe Institute Studies in the Sciences of Complexity (pp. 277–310). Oxford: Oxford University Press.

    Google Scholar 

  • López Paredes, A., & Hernández Iglesias, C. (Eds.). (2008). Agent-based modelling in natural resource management. Valladolid: INSISOC.

    Google Scholar 

  • Manson, S. (2005). Agent-based modeling and genetic programming for modeling land change in the Southern Yucatan Peninsular Region of Mexico. Agriculture, Ecosystems and Environment, 111, 47–62.

    Article  Google Scholar 

  • Manson, S. (2006). Land use in the southern Yucatan peninsular region of Mexico: Scenarios of population and institutional change. Computers, Environment and Urban Systems, 30, 230–253.

    Article  Google Scholar 

  • Marietto, M. B., David, N., Sichman, J. S., & Coelho, H. (2003). Requirements analysis of agent-based simulation platforms: State of the art and new prospects. In J. S. Sichman, F. Bousquet, & P. Davidsson (Eds.), MABS’02, Proceedings of the 3rd international conference on Multi-Agent-Based Simulation, Lecture notes in artificial intelligence (Vol. 2581, pp. 125–141). Berlin: Springer.

    Google Scholar 

  • Mathevet, R., Bousquet, F., Le Page, C., & Antona, M. (2003). Agent-based simulations of interactions between duck population, farming decisions and leasing of hunting rights in the Camargue (Southern France). Ecological Modelling, 165(2/3), 107–126.

    Article  Google Scholar 

  • Mathevet, R., Mauchamp, A., Lifran, R., Poulin, B., & Lefebvre, G. (2003). ReedSim: Simulating ecological and economical dynamics of Mediterranean reedbeds. In Proceedings of MODSIM03, International Congress on Modelling and simulation, integrative modelling of biophysical, social, and economic systems for resource management solutions, Townsville, Australia, 14–17 July 2003. Modelling & Simulation Society of Australia & New Zealand. http://mssanz.org.au/MODSIM03/Volume_03/B02/01_Mathevet.pdf

  • Matthews, R. (2006). The people and landscape model (PALM): Towards full integration of human decision-making and biophysical simulation models. Ecological Modelling, 194, 329–343.

    Article  Google Scholar 

  • Milner-Gulland, E. J., Kerven, C., Behnke, R., Wright, I. A., & Smailov, A. (2006). A multi-agent system model of pastoralist behaviour in Kazakhstan. Ecological Complexity, 3(1), 23–36.

    Article  Google Scholar 

  • Moreno, N., Quintero, R., Ablan, M., Barros, R., Dávila, J., Ramírez, H., et al. (2007). Biocomplexity of deforestation in the Caparo tropical forest reserve in Venezuela: An integrated multi-agent and cellular automata model. Environmental Modelling and Software, 22, 664–673.

    Article  Google Scholar 

  • Muller, G., Grébaut, P., & Gouteux, J.-P. (2004). An agent-based model of sleeping sickness: Simulation trials of a forest focus in southern Cameroon. C.R. Biologies, 327, 1–11.

    Article  Google Scholar 

  • Nute, D., et al. (2004). NED-2: An agent-based decision support system for forest ecosystem management. Environmental Modelling and Software, 19, 831–843.

    Article  Google Scholar 

  • Parker, D. C., Manson, S. M., Janssen, M. A., Hoffmann, M. J., & Deadman, P. (2003). Multi-agent systems for the simulation of land-use and land-cover change: A review. Annals of the Association of American Geographers, 93(2), 314–337.

    Article  Google Scholar 

  • Pepper, J. W., & Smuts, B. B. (2000). The evolution of cooperation in an ecological context: An agent-based model. In T. A. Kohler & G. J. Gumerman (Eds.), Dynamics in human and primate societies, Santa Fe Institute Studies in the Sciences of Complexity (pp. 45–76). New York: Oxford University Press.

    Google Scholar 

  • Perez, P., & Batten, D. (Eds.). (2006). Complex science for a complex world: Exploring human ecosystems with agents. Canberra: ANU E Press.

    Google Scholar 

  • Polhill, J. G., Gotts, N. M., & Law, A. N. R. (2001). Imitative versus non-imitative strategies in a land use simulation. Cybernetics & Systems, 32(1–2), 285–307.

    MATH  Google Scholar 

  • Polhill, J. G., Izquierdo, L. R., & Gotts, N. M. (2006). What every agent-based modeller should know about floating point arithmetic. Environmental Modelling and Software, 21, 283–309.

    Article  Google Scholar 

  • Purnomo, H., & Guizol, P. (2006). Simulating forest plantation co-management with a multi-agent system. Mathematical and Computer Modelling, 44, 535–552.

    Article  MATH  Google Scholar 

  • Purnomo, H., Mendoza, G. A., Prabhu, R., & Yasmi, Y. (2005). Developing multi-stakeholder forest management scenarios: A multi-agent system simulation approach applied in Indonesia. Forest Policy and Economics, 7(4), 475–491.

    Article  Google Scholar 

  • Railsback, S. F., Lytinen, S. L., & Jackson, S. K. (2006). Agent-based simulation platforms: Review and development recommendations. Simulation, 82(9), 609–623.

    Article  Google Scholar 

  • Rateb, F., Pavard, B., Bellamine-BenSaoud, N., Merelo, J. J., & Arenas, M. G. (2005). Modeling malaria with multi-agent systems. International Journal of Intelligent Information Technologies, 1(2), 17–27.

    Article  Google Scholar 

  • Rouchier, J., Bousquet, F., Barreteau, O., Le Page, C., & Bonnefoy, J.-L. (2000). Multi-agent modelling and renewable resources issues: The relevance of shared representation for interacting agents. In S. Moss & P. Davidsson (Eds.), Multi-agent-based simulation, Second International Workshop, MABS 2000, Boston, MA, USA, July; Revised and additional papers, Lecture notes in artificial intelligence (Vol. 1979, pp. 341–348). Berlin: Springer.

    Google Scholar 

  • Rouchier, J., Bousquet, F., Requier-Desjardins, M., & Antona, M. (2001). A multi-agent model for describing transhumance in North Cameroon: Comparison of different rationality to develop a routine. Journal of Economic Dynamics & Control, 25, 527–559.

    Article  MATH  Google Scholar 

  • Schreinemachers, P., & Berger, T. (2006). Land-use decisions in developing countries and their representation in multi-agent systems. Journal of Land Use Science, 1(1), 29–44.

    Article  Google Scholar 

  • Servat, D., Perrier, E., Treuil, J.-P., & Drogoul, A. (1998). When agents emerge from agents: Introducing multi-scale viewpoints in multi-agent simulations. In J. S. Sichman, R. Conte, & N. Gilbert (Eds.), Proceedings of the first international workshop on multi-agent systems and agent-based simulation, Lecture notes in artificial intelligence (Vol. 1534, pp. 183–198). London: Springer.

    Chapter  Google Scholar 

  • Simon, H. A. (1973). The organization of complex systems. In H. H. Pattee (Ed.), Hierarchy theory: The challenge of complex systems (pp. 1–27). New York: Braziller.

    Google Scholar 

  • Soulié, J.-C., & Thébaud, O. (2006). Modeling fleet response in regulated fisheries: An agent-based approach. Mathematical and Computer Modelling, 44, 553–554.

    Article  MATH  Google Scholar 

  • Sulistyawati, E., Noble, I. R., & Roderick, M. L. (2005). A simulation model to study land use strategies in swidden agriculture systems. Agricultural Systems, 85, 271–288.

    Article  Google Scholar 

  • Terna, P. (2005). Review of “Complexity and ecosystem management: The theory and practice of multi-agent systems”. Journal of Artificial Societies and Social Simulation, 8(2), http://jasss.soc.surrey.ac.uk/8/2/reviews/terna.html

  • Thébaud, O., & Locatelli, B. (2001). Modelling the emergence of resource-sharing conventions: An agent-based approach. Journal of Artificial Societies and Social Simulation, 4(2), http://jasss.soc.surrey.ac.uk/4/2/3.html

  • Ziervogel, G., Bithell, M., Washington, R., & Downing, T. (2005). Agent-based social simulation: A method for assessing the impact of seasonal climate forecast applications among smallholder farmers. Agricultural Systems, 83, 1–26.

    Article  Google Scholar 

  • Zunga, Q., Vagnini, A., Le Page, C., Touré, I., Lieurain, E., & Bousquet, F. (1998). Coupler Systèmes d’Information Géographiques et Systèmes Multi-Agents pour modéliser les dynamiques de transfotmation des paysages. Le cas des dynamiques foncières de la Moyenne Vallée du Zambèze (Zimbabwe). In N. Ferrand (Ed.), Modèles et systèmes multi-agents pour la gestion de l’environnement et des territoires (pp. 193–206). Clermont-Ferrand: Cemagref Editions.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Le Page .

Editor information

Editors and Affiliations

Appendices

Appendix

Table 1
Table 2
Table 3
Table 4

22.1.1 Topic and Issue

When multiple topics are covered by a case study, the first in the list indicates the one we used to classify it. Within each topic we have tried to order the case studies from the more abstract and theoretical ones to the more realistic ones. This information can be retrieved from the issue: only case studies representing a real system mention a geographical location.

22.1.2 Environment

  • First line: mode of representation, with the general following pattern:

    [none, network, raster, vector] N(x)

    N indicates the number of elementary spatial entities (nodes of network, cells or polygons), when raster mode, N, is given as number of lines x number of columns, unless some cells have been discarded from the rectangular grid because they were out of bound (then only the total number is given), and (x) indicates the spatial resolution.

  • Second line: level of organization at which the issue is considered (for instance, village, biophysical entity (watershed, forest massif, plateau, etc.), city, conurbation, province, country, etc.)

22.1.3 Agents

One line per type of agent (the practical definition given in this paper applies, regardless of the terminology used by the authors). The general pattern of information looks like:

name(x) [Ho;HeC;HeB(y)] [Ie;Ii;Ic] [R;C]

  • (x) indicates the number of instances defined when initializing a standard scenario, italic mentions that this initial number change during simulation.

  • When x > 1, to account for the heterogeneity of the population of agents, we propose the following coding: “Ho” stands for a homogeneous population (identical agents), and “He” stands for a heterogeneous population. “HeP” indicates that the heterogeneity lies only in parameter values, while “HeB” indicates that the heterogeneity lies in behaviours. In such a case, each agent is equipped with one behavioural module selected from a set of (y) existing ones. Italic points out adaptive agents updating either parameter value (HeP) or behaviour (HeB) during simulation.

  • [Ie, Ii, Ic] indicates the nature of relationships as defined in the text and shown in Fig. 22.3.

  • [R; C] indicates if agents are clearly either reactive or cognitive.

Further Reading

  1. 1.

    The special issue of JASSS in 2001Footnote 1 on “ABM, Game Theory and Natural Resource Management issues” presents a set of papers selected from a workshop held in Montpellier in March 2000, most of them dealing with collective decision-making processes in the field of natural resource management and environment.

  2. 2.

    Gimblett (2002) is a book on integrating GIS and ABM, derived from a workshop held in March 1998 at the Santa Fe Institute. It provides contributions from computer scientists, geographers, landscape architects, biologists, anthropologists, social scientists and ecologists focusing on spatially explicit simulation modelling with agents.

  3. 3.

    Janssen (2002) provides a state-of-the-art review of the theory and application of multi-agent systems for ecosystem management and addresses a number of important topics including the participatory use of models. For a detailed review of this book, see Terna (2005).

  4. 4.

    López Paredes and Hernández Iglesias (2008) advocate why agent-based simulations provide a new and exciting avenue for natural resource planning and management: researches and advisers can compare and explore alternative scenarios and institutional arrangements to evaluate the consequences of policy actions in terms of economic, social and ecological impacts. But as a new field it demands from the modellers a great deal of creativeness, expertise and “wise choice”, as the papers collected in this book show.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Le Page, C. et al. (2017). Agent-Based Modelling and Simulation Applied to Environmental Management. In: Edmonds, B., Meyer, R. (eds) Simulating Social Complexity. Understanding Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-66948-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66948-9_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66947-2

  • Online ISBN: 978-3-319-66948-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics