Abstract
We present VINTE, a theorem prover for conditional logics for counterfactual reasoning introduced by Lewis in the seventies. VINTE implements some internal calculi recently introduced for the basic system \(\mathbb {V}\) and some of its significant extensions with axioms \(\mathbb {N}\), \(\mathbb {T}\), \(\mathbb {C}\), \(\mathbb {W}\) and \(\mathbb {A}\). VINTE is inspired by the methodology of and it is implemented in Prolog. The paper shows some experimental results, witnessing that the performances of VINTE are promising.
Supported by the Project TICAMORE ANR-16-CE91-0002-01, by the EU under Marie Skłodowska-Curie Grant Agreement No. [660047], and by the Project “ExceptionOWL”, Università di Torino and Compagnia di San Paolo, call 2014.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
It is worth noticing that in turn the connective \(\preccurlyeq \) can be defined in terms of .
- 2.
Employing this notation, satisfiability of a \( \preccurlyeq \)-formula in a model becomes the following: \(x \Vdash A\preccurlyeq B \) iff for all . \( \alpha \Vdash ^{\forall } \lnot B \) or \( \alpha \Vdash ^{\exists } A \).
- 3.
It is worth noticing that absoluteness can be equally stated as local absoluteness: it holds .
- 4.
It is worth noticing that this translation introduces an exponential blowup.
References
Alenda, R., Olivetti, N., Pozzato, G.L.: Nested sequent calculi for normal conditional logics. J. Log. Comput. 26(1), 7–50 (2016)
Baltag, A., Smets, S.: The logic of conditional doxastic actions. Texts Log. Games 4, 9–31 (2008). Special Issue on New Perspectives on Games and Interaction
Beckert, B., Posegga, J.: leanTAP: lean tableau-based deduction. J. Autom. Reason. 15(3), 339–358 (1995)
Board, O.: Dynamic interactive epistemology. Games Econ. Behav. 49(1), 49–80 (2004)
Genovese, V., Giordano, L., Gliozzi, V., Pozzato, G.L.: Logics in access control: a conditional approach. J. Log. Comput. 24(4), 705–762 (2014)
Girlando, M., Lellmann, B., Olivetti, N., Pozzato, G.L.: Standard sequent calculi for Lewis’ logics of counterfactuals. In: Michael, L., Kakas, A. (eds.) JELIA 2016. LNCS, vol. 10021, pp. 272–287. Springer, Cham (2016). doi:10.1007/978-3-319-48758-8_18
Girlando, M., Lellmann, B., Olivetti, N., Pozzato, G.L.: Hypersequent calculi for Lewis’ conditional logics with uniformity and reflexivity. In: Nalon, C., Schmidt, R.A. (eds.) TABLEAUX 2017. LNCS (LNAI), vol. 10501, pp. 131–148. Springer, Cham (2017)
Grahne, G.: Updates and counterfactuals. J. Log. Comput. 8(1), 87–117 (1998)
Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential models and cumulative logics. Artif. Intell. 44(1–2), 167–207 (1990)
Lewis, D.: Counterfactuals. Blackwell, Hoboken (1973)
Nute, D.: Topics in Conditional Logic. Reidel, Dordrecht (1980)
Olivetti, N., Pozzato, G.L.: CondLean 3.0: improving condlean for stronger conditional logics. In: Beckert, B. (ed.) TABLEAUX 2005. LNCS (LNAI), vol. 3702, pp. 328–332. Springer, Heidelberg (2005). doi:10.1007/11554554_27
Olivetti, N., Pozzato, G.L.: Theorem proving for conditional logics: condlean and goalduck. J. Appl. Non-Class. Log. 18(4), 427–473 (2008)
Olivetti, N., Pozzato, G.L.: NESCOND: an implementation of nested sequent calculi for conditional logics. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS (LNAI), vol. 8562, pp. 511–518. Springer, Cham (2014). doi:10.1007/978-3-319-08587-6_39
Olivetti, N., Pozzato, G.L.: Nested sequent calculi and theorem proving for normal conditional logics: the theorem prover NESCOND. Intelligenza Artificiale 9(2), 109–125 (2015)
Olivetti, N., Pozzato, G.L.: A standard internal calculus for Lewis’ counterfactual logics. In: Nivelle, H. (ed.) TABLEAUX 2015. LNCS, vol. 9323, pp. 270–286. Springer, Cham (2015). doi:10.1007/978-3-319-24312-2_19
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Girlando, M., Lellmann, B., Olivetti, N., Pozzato, G.L., Vitalis, Q. (2017). VINTE: An Implementation of Internal Calculi for Lewis’ Logics of Counterfactual Reasoning. In: Schmidt, R., Nalon, C. (eds) Automated Reasoning with Analytic Tableaux and Related Methods. TABLEAUX 2017. Lecture Notes in Computer Science(), vol 10501. Springer, Cham. https://doi.org/10.1007/978-3-319-66902-1_9
Download citation
DOI: https://doi.org/10.1007/978-3-319-66902-1_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-66901-4
Online ISBN: 978-3-319-66902-1
eBook Packages: Computer ScienceComputer Science (R0)