Some Notes on the F-partial Order | SpringerLink
Skip to main content

Some Notes on the F-partial Order

  • Conference paper
  • First Online:
Advances in Fuzzy Logic and Technology 2017 (EUSFLAT 2017, IWIFSGN 2017)

Abstract

Nullnorms have been produced from triangular norms and triangular conorms and they have several applications in fuzzy logic. The main purpose of this paper is to study the order induced by nullnorms on bounded lattices. We discuss the relationship between the natural order and the order induced by a nullnorm on bounded lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 22879
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 28599
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aşıcı, E.: An order induced by nullnorms and its properties. Fuzzy Sets Syst. (in press). doi:10.1016/j.fss.2016.12.004

  2. Aşıcı, E., Karaçal, F.: On the \(T\)-partial order and properties. Inf. Sci. 267, 323–333 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aşıcı, E., Karaçal, F.: Incomparability with respect to the triangular order. Kybernetika 52, 15–27 (2016)

    MathSciNet  MATH  Google Scholar 

  4. Birkhoff, G.: Lattice Theory, 3rd edn. American Mathematical Society, Providence (1967)

    Google Scholar 

  5. Calvo, T., De Baets, B., Fodor, J.: The functional equations of Frank and Alsina for uninorms and nullnorms. Fuzzy Sets Syst. 120, 385–394 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Casasnovas, J., Mayor, G.: Discrete t-norms and operations on extended multisets. Fuzzy Sets Syst. 159, 1165–1177 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. De Baets, B., Mesiar, R.: Triangular norms on the real unit square. In: Proceedings of the 1999 EUSFLAT-ESTYLF Joint Conference, Palma de Mallorca, Spain, pp. 351–354 (1999)

    Google Scholar 

  8. Çaylı, G.D., Karaçal, F., Mesiar, R.: On a new class of uninorms on bounded lattices. Inf. Sci. 367–368, 221–231 (2016)

    Article  Google Scholar 

  9. Çaylı, G.D., KaraÇal, F.: Construction of uninorms on bounded lattices. Kybernetika 53, 394–417 (2017)

    Google Scholar 

  10. Çaylı, G.D.: On a new class of t-norms and t-conorms on bounded lattices. Fuzzy Sets Syst. (in press) doi:10.1016/j.fss.2017.07.015

  11. Drewniak, J., Drygaś, P., Rak, E.: Distributivity between uninorms and nullnorms. Fuzzy Sets Syst. 159, 1646–1657 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Drygaś, P.: A characterization of idempotent nullnorms. Fuzzy Sets Syst. 145, 455–461 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Karaçal, F., Ince, M.A., Mesiar, R.: Nullnorms on bounded lattice. Inf. Sci. 325, 227–236 (2015)

    Article  MathSciNet  Google Scholar 

  14. Karaçal, F., Kesicioğlu, M.N.: A T-partial order obtained from t-norms. Kybernetika 47, 300–314 (2011)

    MathSciNet  MATH  Google Scholar 

  15. Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Academic Publishers, Dordrecht (2000)

    Book  MATH  Google Scholar 

  16. Liang, X., Pedrycz, W.: Logic-based fuzzy networks: a study in system modeling with triangular norms and uninorms. Fuzzy Sets Syst. 160, 3475–3502 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mas, M., Mayor, G., Torrens, J.: t-operators. Int. J. Uncertain. Fuzz Knowl.-Based Syst. 7, 31–50 (1999)

    Article  MATH  Google Scholar 

  18. Mas, M., Mayor, G., Torrens, J.: The distributivity condition for uninorms and t-operators. Fuzzy Sets Syst. 128, 209–225 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Menger, K.: Statistical metrics. Proc. Nat. Acad. Sci. 8, 535–537 (1942)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mitsch, H.: A natural partial order for semigroups. Proc. Am. Math. Soc. 97, 384–388 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  21. Saminger, S.: On ordinal sums of triangular norms on bounded lattices. Fuzzy Sets Syst. 157, 1403–1416 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Xie, A., Liu, H.: On the distributivity of uninorms over nullnorms. Fuzzy Sets Syst. 211, 62–72 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emel Aşıcı .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Aşıcı, E. (2018). Some Notes on the F-partial Order. In: Kacprzyk, J., Szmidt, E., Zadrożny, S., Atanassov, K., Krawczak, M. (eds) Advances in Fuzzy Logic and Technology 2017. EUSFLAT IWIFSGN 2017 2017. Advances in Intelligent Systems and Computing, vol 641. Springer, Cham. https://doi.org/10.1007/978-3-319-66830-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66830-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66829-1

  • Online ISBN: 978-3-319-66830-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics