Some Remarks on an Order Induced by Uninorms | SpringerLink
Skip to main content

Some Remarks on an Order Induced by Uninorms

  • Conference paper
  • First Online:
Advances in Fuzzy Logic and Technology 2017 (EUSFLAT 2017, IWIFSGN 2017)

Abstract

Recently an order induced by t-norms, uninorms and nullnorms have been investigated. This paper is mainly devoted to defining and investigating the set of incomparable elements with respect to the order induced by a uninorm. Also, by defining such an order, an equivalence relation on the class of uninorms is defined and this equivalence is deeply investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 22879
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 28599
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aşıcı, E.: An order induced by nullnorms and its properties. Fuzzy Sets Syst. (in press). doi:10.1016/j.fss.2016.12.004

  2. Aşıcı, E., Karaçal, F.: On the \(T\)-partial order and properties. Inf. Sci. 267, 323–333 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aşıcı, E., Karaçal, F.: Incomparability with respect to the triangular order. Kybernetika 52, 15–27 (2016)

    MathSciNet  MATH  Google Scholar 

  4. Birkhoff, G.: Lattice Theory, 3rd edn. American Mathematical Society, Providence (1967)

    MATH  Google Scholar 

  5. Calvo, T., De Baets, B., Fodor, J.: The functional equations of Frank and Alsina for uninorms and nullnorms. Fuzzy Sets Syst. 120, 385–394 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Casasnovas, J., Mayor, G.: Discrete t-norms and operations on extended multisets. Fuzzy Sets Syst. 159, 1165–1177 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. De Baets, B., Mesiar, R.: Triangular norms on product lattices. Fuzzy Sets Syst. 104, 61–75 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. De Baets, B., Mesiar, R.: Triangular norms on the real unit square. In: Proceedings of the 1999 EUSFLAT-ESTYLF Joint Conference, Palma de Mallorca, Spain, pp. 351–354 (1999)

    Google Scholar 

  9. Çaylı, G.D., Karaçal, F., Mesiar, R.: On a new class of uninorms on bounded lattices. Inf. Sci. 367–368, 221–231 (2016)

    Article  Google Scholar 

  10. Çaylı, G.D., KaraÇal, F.: Construction of uninorms on bounded lattices. Kybernetika 53, 394–417 (2017)

    Google Scholar 

  11. Çaylı, G.D.: On a new class of t-norms and t-conorms on bounded lattices. Fuzzy Sets Syst. (in press) doi:10.1016/j.fss.2017.07.015

  12. Drewniak, J., Drygaś, P., Rak, E.: Distributivity between uninorms and nullnorms. Fuzzy Sets Syst. 159, 1646–1657 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Drygaś, P., Rak, E.: Distributivity equation in the class of 2-uninorms. Fuzzy Sets Syst. 291, 82–97 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dubois, D., Prade, H.: Fundamentals of Fuzzy Sets. Kluwer Acad. Publ., Boston (2000)

    Book  MATH  Google Scholar 

  15. Ertuğrul, U., Kesicioğlu, M.N., Karaçal, F.: Ordering based on uninorms. Inf. Sci. 330, 315–327 (2016)

    Article  Google Scholar 

  16. Fodor, J.C., Yager, R.R., Rybalov, A.: Structure of uninorms. Int. J. Uncertainty Fuzziness Knowl. Based Syst. 5, 411–427 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gottwald, S.: A Treatise on Many-Valued Logic. Studies in Logic and Computation. Research Studies Press, Baldock (2001)

    MATH  Google Scholar 

  18. Grabisch, M., Marichal, J.L., Mesiar, R., Pap, E.: Aggregation Functions. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  19. Karaçal, F., Aşıcı, E.: Some notes on T-partial order. J. Inequal. Appl. 2013, 219 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Karaçal, F., Kesicioğlu, M.N.: A T-partial order obtained from t-norms. Kybernetika 47, 300–314 (2011)

    MathSciNet  MATH  Google Scholar 

  21. Karaçal, F., Mesiar, R.: Uninorms on bounded lattices. Fuzzy Sets Syst. 261, 33–43 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Academic Publishers, Dordrecht (2000)

    Book  MATH  Google Scholar 

  23. Liang, X., Pedrycz, W.: Logic-based fuzzy networks: a study in system modeling with triangular norms and uninorms. Fuzzy Sets Syst. 160, 3475–3502 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Maes, K.C., Mesiarova-Zemankova, A.: Cancellativity properties for t-norms and t-subnorms. Inf. Sci. 179, 135–150 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Martin, J., Mayor, G., Torrens, J.: On locally internal monotonic operations. Fuzzy Sets Syst. 137, 27–42 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Mas, M., Mayor, G., Torrens, J.: The distributivity condition for uninorms and t-operators. Fuzzy Sets Syst. 128, 209–225 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. Mitsch, H.: A natural partial order for semigroups. Proc. Am. Math. Soc. 97, 384–388 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  28. Saminger, S.: On ordinal sums of triangular norms on bounded lattices. Fuzzy Sets Syst. 157, 1403–1413 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. Yager, R.R., Rybalov, A.: Uninorm aggregation operators. Fuzzy Sets Syst. 80, 111–120 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  30. Yager, R.R.: Uninorms in fuzzy system modeling. Fuzzy Sets Syst. 122, 167–175 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  31. Yager, R.R.: Aggregation operators and fuzzy systems modelling. Fuzzy Sets Syst. 67, 129–145 (1994)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emel Aşıcı .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Aşıcı, E. (2018). Some Remarks on an Order Induced by Uninorms. In: Kacprzyk, J., Szmidt, E., Zadrożny, S., Atanassov, K., Krawczak, M. (eds) Advances in Fuzzy Logic and Technology 2017. EUSFLAT IWIFSGN 2017 2017. Advances in Intelligent Systems and Computing, vol 641. Springer, Cham. https://doi.org/10.1007/978-3-319-66830-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66830-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66829-1

  • Online ISBN: 978-3-319-66830-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics