Abstract
In this paper, we introduce the concept of fuzzy Heyting algebra (FHA) as an extension of Heyting algebra. We also characterize fuzzy Heyting algebra using the properties of Heyting algebra(HA) and distributive fuzzy lattices. We, finally, state and prove some results on fuzzy Heyting algebra.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Heyting, A.: An Introduction to Intuitionism. North-Holland Publishing Co., Amsterdam (1956)
Skolem, T.: Logico-combinatorial investigations in the satisability or provability of mathematical propositions. Harvard University Press, Cam- bridge (1920)
Ajmal, N., Thomas, K.V.: Fuzzy lattices. Inf. Sci. 79, 271–291 (1994)
Chon, I.: Fuzzy partial order relations and fuzzy lattices. Korean J. Math. 17, 361–374 (2009)
Zwaneveld, D.: Subdirectly irreducible algebras in varieties of universal algebra. University of Amsterdam (2014)
Burries, S., Sankappanavar, H.P.: A Course in Univesal algebra. Springer, Heidelberg (1981)
Rao, G.C., Assaye, B., Mani, M.V.R.: Heyting almost distributive lattices (HADL). Int. J. Comput. Cogn. (to appear)
Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)
Palmgren, E.: Semantics of intuitionistic propositional logic. Lecture Notes for Applied Logic, Fall 2009, Department of Mathematics, Uppsala University
Birkho, G.: Lattice Theory, vol. XXV. American Mathematical Society Colloquium Publications, Providence (1967)
Goguen, J.A.: L-fuzzy sets. J. Math Anal. Appl. 18, 145–174 (1967)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this paper
Cite this paper
Alaba, B.A., Derso, D.N. (2018). Fuzzy Heyting Algebra. In: Kacprzyk, J., Szmidt, E., Zadrożny, S., Atanassov, K., Krawczak, M. (eds) Advances in Fuzzy Logic and Technology 2017. EUSFLAT IWIFSGN 2017 2017. Advances in Intelligent Systems and Computing, vol 641. Springer, Cham. https://doi.org/10.1007/978-3-319-66830-7_3
Download citation
DOI: https://doi.org/10.1007/978-3-319-66830-7_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-66829-1
Online ISBN: 978-3-319-66830-7
eBook Packages: EngineeringEngineering (R0)