Fuzzy Heyting Algebra | SpringerLink
Skip to main content

Fuzzy Heyting Algebra

  • Conference paper
  • First Online:
Advances in Fuzzy Logic and Technology 2017 (EUSFLAT 2017, IWIFSGN 2017)

Abstract

In this paper, we introduce the concept of fuzzy Heyting algebra (FHA) as an extension of Heyting algebra. We also characterize fuzzy Heyting algebra using the properties of Heyting algebra(HA) and distributive fuzzy lattices. We, finally, state and prove some results on fuzzy Heyting algebra.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 22879
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 28599
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Heyting, A.: An Introduction to Intuitionism. North-Holland Publishing Co., Amsterdam (1956)

    MATH  Google Scholar 

  2. Skolem, T.: Logico-combinatorial investigations in the satisability or provability of mathematical propositions. Harvard University Press, Cam- bridge (1920)

    Google Scholar 

  3. Ajmal, N., Thomas, K.V.: Fuzzy lattices. Inf. Sci. 79, 271–291 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chon, I.: Fuzzy partial order relations and fuzzy lattices. Korean J. Math. 17, 361–374 (2009)

    Google Scholar 

  5. Zwaneveld, D.: Subdirectly irreducible algebras in varieties of universal algebra. University of Amsterdam (2014)

    Google Scholar 

  6. Burries, S., Sankappanavar, H.P.: A Course in Univesal algebra. Springer, Heidelberg (1981)

    Book  Google Scholar 

  7. Rao, G.C., Assaye, B., Mani, M.V.R.: Heyting almost distributive lattices (HADL). Int. J. Comput. Cogn. (to appear)

    Google Scholar 

  8. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)

    Article  MATH  Google Scholar 

  9. Palmgren, E.: Semantics of intuitionistic propositional logic. Lecture Notes for Applied Logic, Fall 2009, Department of Mathematics, Uppsala University

    Google Scholar 

  10. Birkho, G.: Lattice Theory, vol. XXV. American Mathematical Society Colloquium Publications, Providence (1967)

    Google Scholar 

  11. Goguen, J.A.: L-fuzzy sets. J. Math Anal. Appl. 18, 145–174 (1967)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derebew Nigussie Derso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Alaba, B.A., Derso, D.N. (2018). Fuzzy Heyting Algebra. In: Kacprzyk, J., Szmidt, E., Zadrożny, S., Atanassov, K., Krawczak, M. (eds) Advances in Fuzzy Logic and Technology 2017. EUSFLAT IWIFSGN 2017 2017. Advances in Intelligent Systems and Computing, vol 641. Springer, Cham. https://doi.org/10.1007/978-3-319-66830-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66830-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66829-1

  • Online ISBN: 978-3-319-66830-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics