Abstract
The Mann-Whitney test for the two-sample location problem is considered. We adopt this nonparametric test to interval-valued data perceived from the epistemic perspective, where the available observations are just interval-valued perceptions of the unknown true outcomes of the experiment. Unlike typical generalizations of statistical procedures into the interval-valued framework, the proposed test entails very low computational costs. However, the presence of interval-valued data results in set-valued p-value which leads no longer to a definite binary decision (reject or not reject the null hypothesis) but may indicate the abstention from making a final decision if the information is too vague.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Couso, I., Dubois, D.: Statistical reasoning with set-valued information: ontic vs. epistemic views. Int. J. Approximate Reasoning 55, 1502–1518 (2014)
Filzmoser, P., Viertl, R.: Testing hypotheses with fuzzy data: the fuzzy p-value. Metrika 59, 21–29 (2004)
Gibbons, J.D., Chakraborti, S.: Nonparametric Statistical Inference. Marcel Dekker, New York (2003)
Grzegorzewski, P.: Statistical inference about the median from vague data. Control Cybern. 27, 447–464 (1998)
Grzegorzewski, P.: Fuzzy tests - defuzzification and randomization. Fuzzy Sets Syst. 118, 437–446 (2001)
Grzegorzewski, P.: Distribution-free tests for vague data. In: Lopez-Diaz, M., Gil, M.A., Grzegorzewski, P., Hryniewicz, O., Lawry, J. (eds.) Soft Methodology and Random Information Systems, pp. 495-502. Springer, Heidelberg (2004)
Kreinovich, V., Servin, C.: How to test hypotheses when exact values are replaced by intervals to protect privacy: case of t-tests, Departamental Technical reports (CS), Paper 892, University of Texas at El Paso (2015)
Mann, H.B., Whitney, D.R.: On a test whether one of two random variables is stochastically larger than the other. Ann. Math. Stat. 18, 50–60 (1947)
Moore, R.E.: Automatic error analysis in digital computation, Technical report Space Div. Report LMSD 84821, Lockheed Missiles and Space Co. (1959)
Nguyen, H.T., Kreinovich, V., Wu, B., Xiang, G.: Computing Statistics under Interval and Fuzzy Uncertainty. Springer, Heidelberg (2012)
Perolat, J., Couso, I., Loquin, K., Strauss, O.: Generalizing the Wilcoxon rank-sum test for interval data. Int. J. Approximate Reasoning 56, 108–121 (2015)
Sunaga, T.: Theory of interval algebra and its application to numerical analysis, RAAG Memoirs, Ggujutsu Bunken Fukuy-kai, Tokyo 2(29–46), 547–564 (1958)
Warmus, M.: Calculus of approximations. Bull. de l’Academie Polonaise de Sci. 4, 253–257 (1956)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this paper
Cite this paper
Grzegorzewski, P., Śpiewak, M. (2018). The Mann-Whitney Test for Interval-Valued Data. In: Kacprzyk, J., Szmidt, E., Zadrożny, S., Atanassov, K., Krawczak, M. (eds) Advances in Fuzzy Logic and Technology 2017. EUSFLAT IWIFSGN 2017 2017. Advances in Intelligent Systems and Computing, vol 642. Springer, Cham. https://doi.org/10.1007/978-3-319-66824-6_17
Download citation
DOI: https://doi.org/10.1007/978-3-319-66824-6_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-66823-9
Online ISBN: 978-3-319-66824-6
eBook Packages: EngineeringEngineering (R0)