Abstract
We present a approach to real-time localization and mapping using a RGB-D camera, such as Microsoft Kinect, and a small and powerful computer Intel Stick Core M3 Processor. Our system can run the computation and sensing required for SLAM on-board the UGV, removing the dependence on unreliable wireless communication. We make use of visual odometry, loop closure and graph optimization to achieve this purpose. Our approach is able to perform accurate and efficient on-board SLAM, and we evaluate its performance thoroughly with varying environments and illumination conditions. The experiments demonstrate that our system can robustly deal with difficult data in indoor and outdoor scenarios.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aguilar, W.G., Verónica, C., José, P.: Obstacle avoidance based-visual navigation for micro aerial vehicles. Electronics 6(1), 10 (2017)
Aguilar, W.G., Casaliglla, V.P., Pólit, J.L., Abad, V., Ruiz, H.: Obstacle avoidance for flight safety on unmanned aerial vehicles. In: Rojas, I., Joya, G., Catala, A. (eds.) IWANN 2017, Part II. LNCS, vol. 10306, pp. 575–584. Springer, Cham (2017). doi:10.1007/978-3-319-59147-6_49
Aguilar, W.G., Verónica, C., José, P.: Obstacle avoidance for low-cost UAVs. In: IEEE 11th International Conference on Semantic Computing (ICSC), San Diego (2017)
Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: Visual odometry and mapping for autonomous flight using an RGB-D camera. In: International Symposium on Robotics Research (ISRR) (2011)
Mur-Artal, R., Montiel, J., Tardo, J.: ORB-SLAM: a versatile and accurate monocular SLAM system. IEEE Trans. Robot. 31(5), 1147–1163 (2015)
Triggs, B., McLauchlan, P.F., Hartley, R.I., Fitzgibbon, A.W.: Bundle adjustment — a modern synthesis. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) IWVA 1999. LNCS, vol. 1883, pp. 298–372. Springer, Heidelberg (2000). doi:10.1007/3-540-44480-7_21
Engel, J., Schöps, T., Cremers, D.: LSD-SLAM: large-scale direct monocular SLAM. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part II. LNCS, vol. 8690, pp. 834–849. Springer, Cham (2014). doi:10.1007/978-3-319-10605-2_54
Kohlbrecher, S., von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: IEEE International Symposium on Safety, Security, and Rescue Robotics (2011)
Whelan, T., Kaess, M., Leonard, J., McDonald, J.: Deformation based loop closure for large scale dense RGB-D SLAM. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (2013)
Nister, D., Naroditsky, O., Bergen, J.: Visual odometry. In: Computer Vision and Pattern Recognition, pp. 652–659 (2004)
Konolige, K., Agrawal, M., Sola, J.: Large-scale visual odometry for rough terrain. In: International Symposium Robotics Research (2007)
Kerl, C., Sturm, J., Cremers, D.: Dense visual slam for RGB-D cameras. In: Proceedings of the International Conference on Intelligent Robot Systems (IROS) (2013)
Michaud, M., Labbe, F.: Appearance-based loop closure detection for online large-scale and long-term operation. IEEE Trans. Robot. 29(3), 734–745 (2013)
Michaud, M., Labbe, F.: Online global loop closure detection for large-scale multi-session graph-based SLAM. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2661–2666 (2014)
Aguilar, W.G., Luna, M.A., Moya, J.F., Abad, V., Ruiz, H., Parra, H., Angulo, C.: Pedestrian detection for UAVs using cascade classifiers and saliency maps. In: Rojas, I., Joya, G., Catala, A. (eds.) IWANN 2017, Part II. LNCS, vol. 10306, pp. 563–574. Springer, Cham (2017). doi:10.1007/978-3-319-59147-6_48
Aguilar, W.G., Luna, M., Moya, J., Abad, V., Parra, H., Ruiz, H.: Pedestrian detection for UAVs using cascade classifiers with meanshift. In: IEEE 11th International Conference on Semantic Computing (ICSC), San Diego (2017)
Stühmer, J., Gumhold, S., Cremers, D.: Real-time dense geometry from a handheld camera. In: Goesele, M., Roth, S., Kuijper, A., Schiele, B., Schindler, K. (eds.) DAGM 2010. LNCS, vol. 6376, pp. 11–20. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15986-2_2
Thrun, S.: Robotic mapping: a survey. In: Exploring Artificial Intelligence in the New Millennium (2003)
Grisetti, G., Grzonka, S., Stachniss, C., Pfaff, P., Burgard, W.: Efficient estimation of accurate maximum likelihood maps in 3D. In: Proceedings of the International Conference on Intelligent Robots and Systems (IROS) (2007)
Dellaert, F.: Square root SAM. In: Proceedings of the Robotics: Science and Systems (RSS), pp. 177–184 (2005)
Kaess, M., Ranganathan, A., Dellaert, F.: iSAM: incremental smoothing and mapping. IEEE Trans. Robot. 24(6), 1365–1378 (2008)
Jin, H., Favaro, P., Soatto, S.: Real-time 3-D motion and structure of point features: front-end system for vision-based control and interaction. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2000)
Murray, G., Klein, D.: Parallel tracking and mapping for small AR workspaces. In: Proceedings of the IEEE and ACM International Symposium on Mixed and Augmented Reality (ISMAR) (2007)
Strasdat, H., Montiel, J.M., Davison, A.: Scale drift-aware large scale monocular SLAM. In: Proceedings of Robotics: Science and Systems (2010)
Aguilar, W.G., Angulo, C.: Real-time model-based video stabilization for microaerial vehicles. Neural Process. Lett. 43(2), 459–477 (2016)
Aguilar, W.G., Angulo, C.: Real-time video stabilization without phantom movements for micro aerial vehicles. EURASIP J. Image Video Process. 1, 1–13 (2014)
Aguilar, W.G., Angulo, C.: Robust video stabilization based on motion intention for low-cost micro aerial vehicles. In: 11th International Multi-Conference on Systems, Signals & Devices (SSD), Barcelona, Spain (2014)
Zisserman, J., Sivic, A.: Video google: a text retrieval approach to object matching in videos. In: Proceedings of the 9th International Conference on Computer Vision, pp. 1470–1478 (2003)
Botterill, T., Mills, S., Green, R.: Bag-of-words-driven, single-camera simultaneous localization and mapping. J. Field Robot. 28(2), 204–226 (2011)
Konolige, K., Bowman, J., Chen, J., Mihelich, P., Calonder, M., Lepetit, V., Fua, P.: View-based maps. Int. J. Robot. Res. 29(8), 941–957 (2010)
Christensen, H.I., Folkesson, J.: Closing the loop with graphical SLAM. IEEE Trans. Robot. 23(4), 731–741 (2007)
Johannsson, H., Kaess, M., Fallon, M., Leonard, J.J.: Temporally scalable visual SLAM using a reduced pose graph. In: RSS Workshop on Long-term Operation of Autonomous Robotic Systems in Changing Environments (2012)
Montemerlo, M., Thrun, S., Koller, D., Wegbreit, B.: FastSLAM: a factored solution to the simultaneous localization and mapping problem. In: Proceedings of the National Conference on Artificial Intelligence (AAAI) (2012)
Grisetti, G., Stachniss, C., Burgard, W.: Improved techniques for grid mapping with rao-blackwellized particle filters. IEEE Trans. Robot. (T-RO) 23, 34–46 (2007)
Weiss, S., Scaramuzza, D., Siegwart, R.: Monocular-SLAM-based navigation for autonomous micro helicopters in GPS-denied environments. J. Field Robot. 28(6), 854–874 (2011)
Tardos, R., Mur-Artal, J.D.: Visual-inertial monocular SLAM with map reuse. IEEE Robot. Autom. Lett. 2, 796–803 (2016)
Engelhard, N., Endres, F., Hess, J., Sturm, J., Burgard, W.: Realtime 3D visual SLAM with a hand-held RGB-D camera. In: RGB-D Workshop on 3D Perception in Robotics at the European Robotics Forum (2011)
Kohlbrecher, S., Meyer, J., Von Stryk, O., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: Proceedings of the IEEE International Symposium on Safety, Security, and Rescue Robotics, Kyoto (2011)
Fraundorfer, F., Heng, L., Honegger, D., Lee, G., Meier, L., Tanskanen, P., Pollefeys, M.: Vision-based autonomous mapping and exploration using a quadrotor MAV. In: Intelligent Robots and Systems (IROS) (2012)
Aguilar, W.G., Morales, S.: 3D environment mapping using the kinect V2 and path planning based on RRT algorithms. Electronics 5(4), 70 (2016)
Aguilar, W.G., Morales, S., Ruiz, H., Abad, V.: RRT* GL based optimal path planning for real-time navigation of UAVs. In: Rojas, I., Joya, G., Catala, A. (eds.) IWANN 2017, Part II. LNCS, vol. 10306, pp. 585–595. Springer, Cham (2017). doi:10.1007/978-3-319-59147-6_50
Cabras, P., Rosell, J., Pérez, A., Aguilar, W.G., Rosell, A.: Haptic-based navigation for the virtual bronchoscopy. In: 18th IFAC World Congress, Milano, Italy
Audras, C., Comport, A., Meilland, M., Rives, P.: Real-time dense appearance-based SLAM for RGB-D sensors. In: Australasian Conference on Robotics and Automation (2011)
Bolles, M.A., Fischler, R.C.: Random sample consensus: a paradigm for model fitting with Apphcatlons to image analysis and automated cartography. Commun. ACM 24, 381–395 (1981)
Acknowledgement
This work is part of the projects 2016-PIC-024 and 2016-PIC-025, from the Universidad de las Fuerzas Armadas ESPE, directed by Dr. Wilbert G. Aguilar.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Aguilar, W.G., Rodríguez, G.A., Álvarez, L., Sandoval, S., Quisaguano, F., Limaico, A. (2017). On-Board Visual SLAM on a UGV Using a RGB-D Camera. In: Huang, Y., Wu, H., Liu, H., Yin, Z. (eds) Intelligent Robotics and Applications. ICIRA 2017. Lecture Notes in Computer Science(), vol 10464. Springer, Cham. https://doi.org/10.1007/978-3-319-65298-6_28
Download citation
DOI: https://doi.org/10.1007/978-3-319-65298-6_28
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-65297-9
Online ISBN: 978-3-319-65298-6
eBook Packages: Computer ScienceComputer Science (R0)