Abstract
Ever increasing competition is driving the efforts to improve productivity throughout nearly all domains. In the manufacturing context, digitalization of value networks and creation of autonomous, self-optimizing systems – a vision coined ‘Industrie 4.0 – is an approach that promises competitive edge over other players. One field in which this vision could lead to great productivity potentials is order scheduling and sequencing in high variety, high volume manufacturing businesses like the automobile industry. A viable technology to realize the expected gains in productivity are software agents and multi-agent systems, since they provide autonomy, flexibility, adaptiveness, and robustness to unforeseeable events. This paper proposes an agent-based control architecture that enables communication between resources and customer orders within a car body shop, so that they can negotiate the best alternative schedule and order sequence in case of disturbances. The proposed architecture allows improvement of overall production system performance in terms of output, resource utilization, delivery reliability and others. Further, the paper describes the implementation and simulation of the multi-agent system with JADE framework and discusses the simulation results, which show that significant productivity leaps can be achieved.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
ElMaraghy, H., Schuh, G., ElMaraghy, W., Piller, F., Schönsleben, P., Tseng, M., Bernard, A.: Product variety management. CIRP Ann. Manuf. Technol. 62(2), 629–652 (2013)
Bauernhansl, T.: Die vierte industrielle revolution – der weg in ein wertschaffendes produktionsparadigma. In: Vogel-Heuser, B., Bauernhansl, T., Hompel, M. (eds.) Handbuch Industrie 4.0 Bd.4. SRT, pp. 1–31. Springer, Heidelberg (2017). doi:10.1007/978-3-662-53254-6_1
Monger, M., Nicherson, J., Woerner, S.l.: Digital Transformation: The Race to Become Future-Ready. https://emarketing.alixpartners.com/rs/emsimages/2017/pubs/DIG/AP_The_race_to_become_future_ready_Apr_2017.pdf. Accessed 25 Apr 2017
Kagermann, H., Wahlster, W., Helbig, J. (eds.): Recommendations for implementing the strategic initiative INDUSTRIE 4.0 – securing the future of German manufacturing industry, Final report of the Industrie 4.0 Working Group, April 2013. http://www.acatech.de/fileadmin/user_upload/Baumstruktur_nach_Website/Acatech/root/de/Material_fuer_Sonderseiten/Industrie_4.0/Final_report__Industrie_4.0_accessible.pdf. Accessed 01 Feb 2016
Arbeitsgruppen der Plattform Industrie 4.0: Umsetzungsstrategie Industrie 4.0 - Ergebnisbericht der Plattform Industrie 4.0, April 2015. https://www.bmwi.de/BMWi/Redaktion/PDF/I/industrie-40-verbaendeplattform-bericht,property=pdf,bereich=bmwi2012,sprache=de,rwb=true.pdf. Accessed 01 Feb 2016
Bauernhansl, T., ten Hompel, M., Vogel-Heuser, B. (eds.): Industrie 4.0 in Produktion, Automatisierung und Logistik. Springer, Wiesbaden (2014). doi:10.1007/978-3-658-04682-8
Manzei, C., Schleupner, L., Heinze, R.: Industrie 4.0 im internationalen Kontext. VDE Verlag, Offenbach (2016)
Sarker, B.R., Pan, H.: Designing a mixed-model, open-station assembly line using mixed-integer programming. J. Oper. Res. Soc. 52, 545–558 (2001)
Boysen, N., Fliedner, M., Scholl, A.: Sequencing mixed-model assembly lines. Survey, classification, and model critique. Eur. J. Oper. Res. 192, 349–373 (2009)
Waldmann, K.-H., Stocker, U.M. (eds.): Operations Research Proceedings. Springer, Heidelberg (2006). doi:10.1007/978-3-540-69995-8
Rahimi-Vahed, A., Rabbani, M., Tavakkoli-Moghaddam, R., Jolai, F., Manavizadeh, N.: Mixed-model assembly line sequencing using real options. In: Waldmann, K.-H., Stocker, U.M. (eds.) Operations Research Proceedings, pp. 161–167. Springer, Heidelberg (2006). doi:10.1007/978-3-540-69995-8_27
Rabbani, M., Rahimi-Vahed, A., Javadi, B., Tavakkoli-Moghaddam, R.: A new approach for mixed-model assembly line sequencing. In: Waldmann, K.-H., Stocker, U.M. (eds.) Operations Research Proceedings, pp. 169–174. Springer, Heidelberg (2006). doi:10.1007/978-3-540-69995-8_28
Mirghorbani, S.M., Rabbani, M., Tavakkoli-Moghaddam, R., Rahimi-Vahed, A.R.: A multi-objective particle swarm for a mixed-model assembly line sequencing. In: Waldmann, K.-H., Stocker, U.M. (eds.) Operations Research Proceedings, pp. 181–186. Springer, Heidelberg (2006). doi:10.1007/978-3-540-69995-8_30
Solnon, C., Cung, V.-D., Nguyen, A., Artigues, C.: The car sequencing problem. Overview of state-of-the-art methods and industrial case-study of the ROADEF’2005 challenge problem. Eur. J. Oper. Res. 191, 912–927 (2008)
Brucker, P., Knust, S.: Complex Scheduling. GOR-Publications, 2nd edn. Springer, Heidelberg (2012). doi:10.1007/978-3-642-23929-8
Verstraete, P., Valckenaers, P., Van Brussel, H., Saint Germain, B., Hadeli, K., Van Belle, J.: Towards robust and efficient planning execution. Eng. Appl. Artif. Intell. 21, 304–314 (2008)
Wannagat, A., Schütz, D., Vogel-Heuser, B.: Einsatz von Softwareagenten am Beispiel einer kontinuierlichen, hydraulischen Heizpresse. In: Göhner, P. (ed.) Agentensysteme in der Automatisierungstechnik. Xpert.press, pp. 169–185. Springer, Berlin (2013). doi:10.1007/978-3-642-31768-2_10
Göhner, P. (ed.): Agentensysteme in der Automatisierungstechnik. Xpert.press, pp. 169–185. Springer, Berlin (2013)
Schwede, C., Klingebiel, K., Pauli, T., Wagenitz, A.: Simulationsgestützte Optimierung für die distributions-orientierte Auftragsreihenfolgeplanung in der Automobilindustrie. In: März, L., Krug, W., Rose, O., Weigert, G. (eds.) Simulation und Optimierung in Produktion und Logistik, pp. 151–170. Springer, Heidelberg (2011). doi:10.1007/978-3-642-14536-0_13
Pil, F.K., Holweg, M.: Linking product variety to order-fulfilment strategies. Interfaces 34, 394–403 (2004)
Meissner, S.: Logistische Stabilität in der automobilen Variantenfließfertigung. Dissertation, Technische Universität München, Garching b. München (2009)
Herlyn, W.J.: PPS im Automobilbau. Produktionsprogrammplanung und -steuerung von Fahrzeugen und Aggregaten, Hanser (Fahrzeugtechnik), Munich (2012)
Scheffels, G.: The pearl chain logistics concept. JOT 5(2), 18–21 (2012)
Boysen, N., Fliedner, M., Scholl, A.: Level-Scheduling bei Variantenfließfertigung. Klassifikation, Literaturüberblick und Modellkritik. Journal für Betriebswirtschaft 57, 37–66 (2007)
Boysen, N., Zenker, M.: A decomposition approach for the car resequencing problem with selectivity banks. Comput. Oper. Res. 40, 98–108 (2013)
Downing, N., Feydy, T., Stuckey, P.J.: Explaining flow-based propagation. In: Beldiceanu, N., Jussien, N., Pinson, É. (eds.) CPAIOR 2012. LNCS, vol. 7298, pp. 146–162. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29828-8_10
Boysen, N., Scholl, A., Wopperer, N.: Resequencing of mixed-model assembly lines. Survey and research agenda. Eur. J. Oper. Res. 216, 594–604 (2012)
Lüder, A., Schmidt, N., Hell, K., Röpke, H., Zawisza, J.: Description means for information artifacts throughout the life cycle of CPPS. In: Biffl, S., Lüder, A., Gerhard, D. (eds.) Multi-Disciplinary Engineering for Cyber-Physical Production Systems, pp. 169–183. Springer, Cham (2017). doi:10.1007/978-3-319-56345-9_7
Wooldridge, M., Jennings, N.R.: Intelligent Agents. LNCS, vol. 890. Springer, Heidelberg (1995)
Botti, V., Giret, A.: ANEMONA: A Multi-agent Methodology for Holonic Manufacturing Systems, 1st edn. Springer, London (2008). doi:10.1007/978-1-84800-310-1
Unland, R.: Software agent systems. In: Leitão, P., Karnouskos, S. (eds.) Industrial Agents: Emerging Applications of Software Agents in Industry, pp. 3–22. Elsevier, Amsterdam, Oxford, Waltham (2015)
Roidl, M.: Kooperation und Autonomie in selbststeuernden Systemen. In: Günthner, W., ten Hompel, M. (eds.) Internet der Dinge in der Intralogistik, pp. 65–78. Springer, Heidelberg (2010). doi:10.1007/978-3-642-04896-8_9
Mönch, L.: Agentenbasierte Produktionssteuerung komplexer Produktionssysteme, Deutscher Universitäts-Verlag GWV Fachverlage GmbH (Wirtschaftsinformatik), Wiesbaden (2006)
Bellifemine, F., Caire, G., Greenwood, D.: Developing Multi-agent Systems with JADE. Wiley Series in Agent Technology (Reprinted). Wiley, Chichester (2008)
Röpke, H., Lüder, A., Hell, K., Zawisza, J., Schmidt, N.: Identification of “Industrie 4.0” component hierarchy layers. In: 21st IEEE Conference on Emerging Technologies and Factory Automation (ETFA), 6–9 September 2016, pp. 1–8, Berlin. IEEE, Piscataway (2016)
Bussmann, S., Jennings, N.R., Wooldridge, M.: Multiagent Systems for Manufacturing Control. A Design Methodology. Springer, Heidelberg (2004). doi:10.1007/978-3-662-08872-2
Zawisza, J., Hell, K., Röpke, H., Lüder, A., Schmidt, N.: Generische Strukturierung von Produktionssystemen der Fertigungsindustrie. In: 17. Branchentreff der Mess- und Automatisierungstechnik - Automation 2016 - Secure & Reliable in the Digital World, VDI-Berichte 2284, 16 p., VDI-Verlag GmbH, Düsseldorf (2016)
Lüder, A., Calá, A., Zawisza, J., Rosendahl, R.: Design pattern for agent based production system control – a survey. Submitted to 13th IEEE Conference on Automation Science and Engineering August 20–23, Xi’an, China (2017)
Kütting, H., Sauer, M.J.: Elementare Stochastik. Mathematische Grundlagen und didaktische Konzepte. Springer, Berlin (2014)
Birolini, A.: Reliability Engineering. Theory and Practice, 7th edn. Springer, Heidelberg (2014). doi:10.1007/978-3-642-39535-2
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Lüder, A., Zawisza, J., Becker, A. (2017). Advancing the Performance of Complex Manufacturing Systems Through Agent-Based Production Control. In: Berndt, J., Petta, P., Unland, R. (eds) Multiagent System Technologies. MATES 2017. Lecture Notes in Computer Science(), vol 10413. Springer, Cham. https://doi.org/10.1007/978-3-319-64798-2_7
Download citation
DOI: https://doi.org/10.1007/978-3-319-64798-2_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-64797-5
Online ISBN: 978-3-319-64798-2
eBook Packages: Computer ScienceComputer Science (R0)