Constrained Deep Answer Sentence Selection | SpringerLink
Skip to main content

Constrained Deep Answer Sentence Selection

  • Conference paper
  • First Online:
Text, Speech, and Dialogue (TSD 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10415))

Included in the following conference series:

Abstract

In this paper, we propose Constrained Deep Neural Network (CDNN) a simple deep neural model for answer sentence selection. CDNN makes its predictions based on neural reasoning compound with some symbolic constraints. It integrates pattern matching technique into sentence vector learning. When trained using enough samples, CDNN outperforms regular models. We show how using other sources of training data as a mean of transfer learning can enhance the performance of the network. In a well-studied dataset for answer sentence selection, our network improves the state of the art in answer sentence selection significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Compared to MRR and MAP, Accuracy is a pessimistic measure for this experiment, because it just considers the first selected answer and disregards the others.

References

  1. Aghaebrahimian, A., Jurčíček, F.: Constraint-based open-domain question answering using knowledge graph search. In: Sojka, P., Horák, A., Kopeček, I., Pala, K. (eds.) TSD 2016. LNCS (LNAI), vol. 9924, pp. 28–36. Springer, Cham (2016). doi:10.1007/978-3-319-45510-5_4

    Google Scholar 

  2. Aghaebrahimian, A., Jurčíček, F.: Open-domain factoid question answering via knowledge graph search. In: Proceedings of the Workshop on Human-Computer Question Answering, The North American Chapter of the Association for Computational Linguistics (NAACL) (2016)

    Google Scholar 

  3. Bordes, A., Usunier, N., Chopra, S., Weston, J.: Large-scale simple question answering with memory networks. arXiv preprint arXiv:1506.02075 (2015)

  4. Clarke, J., Goldwasser, D., Chang, M.W., Roth, D.: Driving semantic parsing from the worlds response. In: Proceedings of the Conference on Computational Natural Language Learning (2010)

    Google Scholar 

  5. Feng, M., Xiang, B., Glass, M.R., Wang, L., Zhou, B.: Applying deep learning to answer selection: a study and an open task. In: Proceedings of IEEE ASRU Workshop (2015)

    Google Scholar 

  6. Fern, S., Stevenson, M.: A semantic similarity approach to paraphrase detection. In: Proceedings of the 11th Annual Research Colloquium of the UK Special-Interest Group for Computational Linguistics (2008)

    Google Scholar 

  7. He, H., Gimpel, K., Lin, J.: Multi-perspective sentence similarity modeling with convolutional neural networks. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP) (2015)

    Google Scholar 

  8. He, H., Lin, J.: Pairwise word interaction modeling with deep neural networks for semantic similarity measurement. In: The North American Chapter of the Association for Computational Linguistics (NAACL) (2016)

    Google Scholar 

  9. Hermann, K.M., Kocisky, T., Grefenstette, E., Espeholt, L., Kay, W., Suleyman, M., Blunsom, P.: Teaching machines to read and comprehend. In: Advances in Neural Information Processing Systems (2015)

    Google Scholar 

  10. Kadlec, R., Vodolan, M., Libovicky, J., Macek, J., Kleindienst, J.: Knowledge-based dialog state tracking. In: 2014 IEEE Spoken Language Technology Workshop (SLT) (2014)

    Google Scholar 

  11. Khashabi, D., Khot, T., Sabharwal, A., Clark, P., Etzioni, O., Roth, D.: Question answering via integer programming over semi-structured knowledge. In: Proceedings of International Joint Conference on Artificial Intelligence (IJCAI) (2016)

    Google Scholar 

  12. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. arXiv:1412.6980 (2014)

  13. Kwiatkowski, T., Zettlemoyer, L., Goldwater, S., Steedman., M.: Inducing probabilistic CCG grammars from logical form with higher-order unification. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing (2010)

    Google Scholar 

  14. Madnani, N., Tetreault, J., Chodorow, M.: Re-examining machine translation metrics for paraphrase identification. In: Proceedings of the 2012 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (2012)

    Google Scholar 

  15. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. In: Proceedings of Workshop at ICLR (2013)

    Google Scholar 

  16. Min, S., Seo, M., Hajishirzi, H.: Question answering through transfer learning from large fine-grained supervision data. arXiv:1702.02171 (2017)

  17. Pennington, J., Socher, R., Manning, C.D.: Glove: Global vectors for word representation. In: Proceedings of the Empirical Methods in Natural Language Processing (2014)

    Google Scholar 

  18. Rajpurkar, P., Zhang, J., Lopyrev, K., Liang, P.: Squad: 100,000+ questions for machine comprehension of text. arXiv preprint arXiv:1606.05250 (2016)

  19. Rao, J., He, H., Lin, J.: Noise-contrastive estimation for answer selection with deep neural networks. In: Proceedings of the 25th ACM International on Conference on Information and Knowledge Management, CIKM (2016)

    Google Scholar 

  20. Santos, C.D., Tan, M., Xiang, B., Zhou, B.: Attentive pooling networks. arXiv:1602.03609 (2016)

  21. Tellex, S., Katz, B., Lin, J., Fernandes, A., Marton, G.: Quantitative evaluation of passage retrieval algorithms for question answering. In: SIGIR (2003)

    Google Scholar 

  22. Xu, W., Ritter, A., Callison-Burch, C., Dolan, W.B., Ji, Y.: Extracting lexically divergent paraphrases from twitter. Trans. Assoc. Comput. Linguist. 2, 435–448 (2014)

    Google Scholar 

  23. Yang, Y., Yih, W.T., Meek, C.: WikiQA: a challenge dataset for open-domain question answering. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP) (2015)

    Google Scholar 

  24. Yao, X., Durme, B.V.: Information extraction over structured data: question answering with freebase. In: Proceedings of Association for Computational Linguistics (2014)

    Google Scholar 

  25. Yao, X., Van Durme, B., Callison-Burch, C., Clark, P.: Answer extraction as sequence tagging with tree edit distance. In: HLT-NAACL (2013)

    Google Scholar 

  26. Yih, W.T., Chang, M.W., Meek, C., Pastusiak, A.: Question answering using enhanced lexical semantic models. In: Proceedings of Association for Computational Linguistics (ACL) (2013)

    Google Scholar 

  27. Yin, W., Schtze, H., Xiang, B., Zhou, B.: ABCNN: attention-based convolutional neural network for modeling sentence pairs. arXiv:1512.05193 (2015)

  28. Yu, L., Moritz Hermann, K., Blunsom, P., Pulman, S.: Deep learning for answer sentence selection. In: NIPS Deep Learning Workshop (2014)

    Google Scholar 

  29. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014). doi:10.1007/978-3-319-10590-1_53

    Google Scholar 

Download references

Acknowledgments

This research was partially funded by the Ministry of Education, Youth and Sports of the Czech Republic under SVV project number 260 453, core research funding, and GAUK 207-10/250098 of Charles University in Prague.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Aghaebrahimian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Aghaebrahimian, A. (2017). Constrained Deep Answer Sentence Selection. In: Ekštein, K., Matoušek, V. (eds) Text, Speech, and Dialogue. TSD 2017. Lecture Notes in Computer Science(), vol 10415. Springer, Cham. https://doi.org/10.1007/978-3-319-64206-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64206-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64205-5

  • Online ISBN: 978-3-319-64206-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics