Abstract
In this paper, we propose Constrained Deep Neural Network (CDNN) a simple deep neural model for answer sentence selection. CDNN makes its predictions based on neural reasoning compound with some symbolic constraints. It integrates pattern matching technique into sentence vector learning. When trained using enough samples, CDNN outperforms regular models. We show how using other sources of training data as a mean of transfer learning can enhance the performance of the network. In a well-studied dataset for answer sentence selection, our network improves the state of the art in answer sentence selection significantly.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Compared to MRR and MAP, Accuracy is a pessimistic measure for this experiment, because it just considers the first selected answer and disregards the others.
References
Aghaebrahimian, A., Jurčíček, F.: Constraint-based open-domain question answering using knowledge graph search. In: Sojka, P., Horák, A., Kopeček, I., Pala, K. (eds.) TSD 2016. LNCS (LNAI), vol. 9924, pp. 28–36. Springer, Cham (2016). doi:10.1007/978-3-319-45510-5_4
Aghaebrahimian, A., Jurčíček, F.: Open-domain factoid question answering via knowledge graph search. In: Proceedings of the Workshop on Human-Computer Question Answering, The North American Chapter of the Association for Computational Linguistics (NAACL) (2016)
Bordes, A., Usunier, N., Chopra, S., Weston, J.: Large-scale simple question answering with memory networks. arXiv preprint arXiv:1506.02075 (2015)
Clarke, J., Goldwasser, D., Chang, M.W., Roth, D.: Driving semantic parsing from the worlds response. In: Proceedings of the Conference on Computational Natural Language Learning (2010)
Feng, M., Xiang, B., Glass, M.R., Wang, L., Zhou, B.: Applying deep learning to answer selection: a study and an open task. In: Proceedings of IEEE ASRU Workshop (2015)
Fern, S., Stevenson, M.: A semantic similarity approach to paraphrase detection. In: Proceedings of the 11th Annual Research Colloquium of the UK Special-Interest Group for Computational Linguistics (2008)
He, H., Gimpel, K., Lin, J.: Multi-perspective sentence similarity modeling with convolutional neural networks. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP) (2015)
He, H., Lin, J.: Pairwise word interaction modeling with deep neural networks for semantic similarity measurement. In: The North American Chapter of the Association for Computational Linguistics (NAACL) (2016)
Hermann, K.M., Kocisky, T., Grefenstette, E., Espeholt, L., Kay, W., Suleyman, M., Blunsom, P.: Teaching machines to read and comprehend. In: Advances in Neural Information Processing Systems (2015)
Kadlec, R., Vodolan, M., Libovicky, J., Macek, J., Kleindienst, J.: Knowledge-based dialog state tracking. In: 2014 IEEE Spoken Language Technology Workshop (SLT) (2014)
Khashabi, D., Khot, T., Sabharwal, A., Clark, P., Etzioni, O., Roth, D.: Question answering via integer programming over semi-structured knowledge. In: Proceedings of International Joint Conference on Artificial Intelligence (IJCAI) (2016)
Kingma, D., Ba, J.: Adam: a method for stochastic optimization. arXiv:1412.6980 (2014)
Kwiatkowski, T., Zettlemoyer, L., Goldwater, S., Steedman., M.: Inducing probabilistic CCG grammars from logical form with higher-order unification. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing (2010)
Madnani, N., Tetreault, J., Chodorow, M.: Re-examining machine translation metrics for paraphrase identification. In: Proceedings of the 2012 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (2012)
Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. In: Proceedings of Workshop at ICLR (2013)
Min, S., Seo, M., Hajishirzi, H.: Question answering through transfer learning from large fine-grained supervision data. arXiv:1702.02171 (2017)
Pennington, J., Socher, R., Manning, C.D.: Glove: Global vectors for word representation. In: Proceedings of the Empirical Methods in Natural Language Processing (2014)
Rajpurkar, P., Zhang, J., Lopyrev, K., Liang, P.: Squad: 100,000+ questions for machine comprehension of text. arXiv preprint arXiv:1606.05250 (2016)
Rao, J., He, H., Lin, J.: Noise-contrastive estimation for answer selection with deep neural networks. In: Proceedings of the 25th ACM International on Conference on Information and Knowledge Management, CIKM (2016)
Santos, C.D., Tan, M., Xiang, B., Zhou, B.: Attentive pooling networks. arXiv:1602.03609 (2016)
Tellex, S., Katz, B., Lin, J., Fernandes, A., Marton, G.: Quantitative evaluation of passage retrieval algorithms for question answering. In: SIGIR (2003)
Xu, W., Ritter, A., Callison-Burch, C., Dolan, W.B., Ji, Y.: Extracting lexically divergent paraphrases from twitter. Trans. Assoc. Comput. Linguist. 2, 435–448 (2014)
Yang, Y., Yih, W.T., Meek, C.: WikiQA: a challenge dataset for open-domain question answering. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP) (2015)
Yao, X., Durme, B.V.: Information extraction over structured data: question answering with freebase. In: Proceedings of Association for Computational Linguistics (2014)
Yao, X., Van Durme, B., Callison-Burch, C., Clark, P.: Answer extraction as sequence tagging with tree edit distance. In: HLT-NAACL (2013)
Yih, W.T., Chang, M.W., Meek, C., Pastusiak, A.: Question answering using enhanced lexical semantic models. In: Proceedings of Association for Computational Linguistics (ACL) (2013)
Yin, W., Schtze, H., Xiang, B., Zhou, B.: ABCNN: attention-based convolutional neural network for modeling sentence pairs. arXiv:1512.05193 (2015)
Yu, L., Moritz Hermann, K., Blunsom, P., Pulman, S.: Deep learning for answer sentence selection. In: NIPS Deep Learning Workshop (2014)
Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014). doi:10.1007/978-3-319-10590-1_53
Acknowledgments
This research was partially funded by the Ministry of Education, Youth and Sports of the Czech Republic under SVV project number 260 453, core research funding, and GAUK 207-10/250098 of Charles University in Prague.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Aghaebrahimian, A. (2017). Constrained Deep Answer Sentence Selection. In: Ekštein, K., Matoušek, V. (eds) Text, Speech, and Dialogue. TSD 2017. Lecture Notes in Computer Science(), vol 10415. Springer, Cham. https://doi.org/10.1007/978-3-319-64206-2_7
Download citation
DOI: https://doi.org/10.1007/978-3-319-64206-2_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-64205-5
Online ISBN: 978-3-319-64206-2
eBook Packages: Computer ScienceComputer Science (R0)