Abstract
This paper analyses issues of rare and unknown word splitting with byte pair encoding for neural machine translation and proposes two methods that allow improving the quality of word splitting. The first method linguistically guides byte pair encoding and the second method limits splitting of unknown words. We also evaluate corpus re-translation for a new language pair – English-Latvian. We show a significant improvement in translation quality over baseline systems in all reported experiments. We envision that the proposed methods will allow improving the translation of named entities and technical texts in production systems that often receive data not represented in the training corpus.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. In: Proceedings of the International Conference on Learning Representations (ICLR) (2015)
Bojar, O., Chatterjee, R., Federmann, C., Graham, Y., Haddow, B., Huck, M., Jimeno Yepes, A., Koehn, P., Logacheva, V., Monz, C., Negri, M., Neveol, A., Neves, M., Popel, M., Post, M., Rubino, R., Scarton, C., Specia, L., Turchi, M., Verspoor, K., Zampieri, M.: Findings of the 2016 conference on machine translation. In: Proceedings of the First Conference on Machine Translation (WMT 2016), vol. 2, pp. 131–198 (2016). Shared Task Papers
Caglayan, O., Barrault, L., Bougares, F.: Multimodal Attention for Neural Machine Translation (2016). http://arxiv.org/abs/1609.03976
Devlin, J., Zbib, R., Huang, Z., Lamar, T., Schwartz, R.M., Makhoul, J.: Fast and robust neural network joint models for statistical machine translation. In: ACL (1), pp. 1370–1380. Citeseer (2014)
Dyer, C., Chahuneau, V., Smith, N.A.: A Simple, fast, and effective reparameterization of IBM model 2. In: Proceedings of NAACL HLT 2013, pp. 644–648, Atlanta, June 2013
Firat, O., Cho, K., Bengio, Y.: Multi-way, multilingual neural machine translation with a shared attention mechanism. In: NAACL-HLT 2016, pp. 866–875 (2016)
Girgždis, V., Kāle, M., Vaicekauskis, M., Zariņa, I., Skadiņa, I.: Tracing mistakes and finding gaps in automatic word alignments for Latvian-English translation. In: Proceedings of Baltic HLT 2014, pp. 87–94. IOS Press (2014)
Jean, S., Firat, O., Cho, K., Memisevic, R., Bengio, Y.: Montreal neural machine translation systems for WMT15. In: Proceedings of WMT 2015, pp. 134–140 (2015)
Koehn, P., Hoang, H., Birch, A., Callison-Burch, C., Federico, M., Bertoldi, N., Cowan, B., Shen, W., Moran, C., Zens, R., Dyer, C., Bojar, O., Constantin, A., Herbst, E.: Moses: open source toolkit for statistical machine translation. In: Proceedings of the 45th Annual Meeting of the ACL on Interactive Poster and Demonstration Sessions, ACL 2007, pp. 177–180. Association for Computational Linguistics, Stroudsburg (2007)
Koehn, P., Och, F.J., Marcu, D.: Statistical phrase-based translation. In: Proceedings of NAACL HLT 2013, pp. 48–54. Association for Computational Linguistics (2003)
Lee, J., Cho, K., Hofmann, T.: Fully Character-Level Neural Machine Translation without Explicit Segmentation (2016)
Luong, M.T., Pham, H., Manning, C.D.: Effective approaches to attention-based neural machine translation. In: Proceedings of EMNLP 2015, pp. 1412–1421. Association for Computational Linguistics, Lisbon (2015)
Meng, F., Lu, Z., Li, H., Liu, Q.: Interactive attention for neural machine translation. In: Proceedings of the 26th International Conference on Computational Linguistics, Osaka, Japan, pp. 2174–2185 (2016)
Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: BLEU: a method for automatic evaluation of machine translation. In: Proceedings of the 40th Annual Meeting on Association for Computational Linguistics, pp. 311–318. Association for Computational Linguistics (2002)
Sennrich, R., Haddow, B.: Linguistic input features improve neural machine translation. In: Proceedings of the First Conference on Machine Translation (WMT 2016), vol. 1, pp. 83–91 (2016). Research Papers
Sennrich, R., Haddow, B., Birch, A.: Edinburgh neural machine translation systems for WMT 16. In: Proceedings of the First Conference on Machine Translation (WMT 2016), vol. 2 (2016). Shared Task Papers
Sennrich, R., Haddow, B., Birch, A.: Neural machine translation of rare words with subword units. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (ACL 2016), Berlin, Germany (2016)
Skadiņš, R., Goba, K., Šics, V.: Improving SMT for baltic languages with factored models. In: Proceedings of the Fourth International Conference on Human Language Technologies: The Baltic Perspective, Baltic HLT 2010, vol. 219, pp. 125–132. IOS Press (2010)
Stanojevic, M., Sima’an, K.: BEER: BEtter evaluation as ranking. In: Proceedings of the Ninth Workshop on Statistical Machine Translation, pp. 414–419 (2014)
Vasiļjevs, A., Skadiņš, R., Tiedemann, J.: LetsMT!: a cloud-based platform for do-it-yourself machine translation. In: Proceedings of the ACL 2012 System Demonstrations, pp. 43–48. Association for Computational Linguistics, Jeju Island (2012)
Wang, W., Peter, J.T., Rosendahl, H., Ney, H.: CharacTER: translation edit rate on character level. In: Proceedings of the First Conference on Machine Translation (WMT 2016), Berlin, Germany, vol. 2, pp. 505–510 (2016). Shared Task Papers
Acknowledgments
The research has been supported by the European Regional Development Fund within the research project “Neural Network Modelling for Inflected Natural Languages” No. 1.1.1.1/16/A/215.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Pinnis, M., Krišlauks, R., Deksne, D., Miks, T. (2017). Neural Machine Translation for Morphologically Rich Languages with Improved Sub-word Units and Synthetic Data. In: Ekštein, K., Matoušek, V. (eds) Text, Speech, and Dialogue. TSD 2017. Lecture Notes in Computer Science(), vol 10415. Springer, Cham. https://doi.org/10.1007/978-3-319-64206-2_27
Download citation
DOI: https://doi.org/10.1007/978-3-319-64206-2_27
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-64205-5
Online ISBN: 978-3-319-64206-2
eBook Packages: Computer ScienceComputer Science (R0)