Navigation and Dynamic Control of Omnidirectional Platforms | SpringerLink
Skip to main content

Navigation and Dynamic Control of Omnidirectional Platforms

  • Conference paper
  • First Online:
Towards Autonomous Robotic Systems (TAROS 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10454))

Included in the following conference series:

Abstract

This work proposes a Path Planning method using the virtual potential field, which provides a parameterized path in the space so that the omnidirectional mobile platform to reach the desired point and kinematic modeling of the platform to propose a Nonlinear Controller, that’s used to execute the path-following by means of Linear Algebra, for to correct the desired position and orientation of the omnidirectional platform use a dynamic compensation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Carrillo, A., Pelayo, S., Pelayo, J.: Development of a mobile service robot for classify objects and place them in containers. In: Power, Electronics and Computing (ROPEC) (2016)

    Google Scholar 

  2. Andaluz, V.H., Chicaiza, F.A., Gallardo, C., Quevedo, W.X., Varela, J., Sánchez, J.S., Arteaga, O.: Unity3D-MatLab simulator in real time for robotics applications. In: Paolis, L.T., Mongelli, A. (eds.) AVR 2016, Part I. LNCS, vol. 9768, pp. 246–263. Springer, Cham (2016). doi:10.1007/978-3-319-40621-3_19

    Google Scholar 

  3. Shenoy, P., Miller, K.J., Crawford, B., Rao, R.P.N.: Online electromyographic control of a robotic prosthesis. IEEE Trans. Biomed. Eng. 55, 1128–1135 (2008). doi:10.1109/TBME.2007.909536

    Article  Google Scholar 

  4. Barraquand, J., Kavraki, L., Motwani, R., Latombe, J., Li, T., Raghavan, P.: A random sampling scheme for path planning. In: International Symposium on Robotics Research, vol. 6, pp. 249–264 (1996)

    Google Scholar 

  5. Andaluz, V.H., Ortiz, J.S., Chicaiza, F.A., Varela, J., Espinosa, E.G., Canseco, P.: Adaptive control of the human-wheelchair system through brain signals. In: Kubota, N., Kiguchi, K., Liu, H., Obo, T. (eds.) ICIRA 2016, Part II. LNCS, vol. 9835, pp. 223–234. Springer, Cham (2016). doi:10.1007/978-3-319-43518-3_22

    Chapter  Google Scholar 

  6. Andaluz, V.H., Roberti, F., Toibero, J.M., Carelli, R., Wagner, B.: Adaptive dynamic path following control of an unicycle-like mobile robot. In: Jeschke, S., Liu, H., Schilberg, D. (eds.) ICIRA 2011, Part I. LNCS, vol. 7101, pp. 563–574. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25486-4_56

    Chapter  Google Scholar 

  7. Overmars, M., Svestka, P.: A probabilistic learning approach to motion planning. In: Workshop in Algorithmic Foundations of Robotics, vol. 32, pp. 1–25 (1994)

    Google Scholar 

  8. Karray, A., Feki, M.: Tracking control of a mobile manipulator with fuzzy PD controller. In: IEEE Conference Publications: 2015 World Congress on Information Technology and Computer Applications (WCITCA), pp. 1–5 (2015)

    Google Scholar 

  9. Karray, A., Feki, M.: Control de seguimiento de un manipulador móvil con un controlador de PD difuso. In: Publicaciones de la Conferencia IEEE: Congreso Mundial de Tecnología de la Información y Aplicaciones Informáticas 2015 (WCITCA), pp. 1–5 (2015)

    Google Scholar 

  10. Wieber, P.: Trajectory free linear model predictive control for stable walking in the presence of strong perturbations. In: 6th IEEE-RAS International Conference on Humanoid Robots, Genova, pp. 137–142 (2006)

    Google Scholar 

  11. Rosales, A., Scaglia, G., Mut, V., Sciascio, F.D.: Seguimiento de trayectorias de robots móviles en entornos dinámicos-un enfoque de álgebra lineal, vol. 27, pp. 981–997. Universidad de Cambridge (2009)

    Google Scholar 

  12. Rómoli, S., Serrano, M.E., Ortiz, O.A., Vega, J.R.: Control de seguimiento de los perfiles de concentración en un bioreactor fed-batch usando metodología de álgebra lineal, pp. 162–171. Elsevier (2015)

    Google Scholar 

  13. Scaglia, G., Rosales, A., Quintero, L., Mut, V., Agarwal, R.: A linear-interpolation-based controller design for trajectory tracking of mobile robots. Elsevier Control Eng. Pract. 18, 318–329 (2010). https://doi.org/10.1016/j.conengprac.2009.11.011

    Article  Google Scholar 

  14. Boyuan, L., Haiping, D., Weihua, L.: A potential field approach-based trajectory control for autonomous electric vehicles with in-wheel motors. IEEE Intell. Transp. Syst. Soc. PP(99),1–12 (2016)

    Google Scholar 

  15. Stentz, A.: Optimal and efficient path planning for partially-known environments. In: Proceedings of the 1994 IEEE International Conference on Robotics and Automation, pp. 3310–3317 (1994)

    Google Scholar 

  16. Veslin, E., Slama, J., Dutra, M.S., Slama, J.: Motion planning on mobile robots using differential flatness. IEEE Latin Am. Trans. 9, 1006–1011 (2011)

    Article  Google Scholar 

  17. Watanabe, K.: Control of an omnidirectional mobile robot. In: Proceedings of the 1998 Second International Conference on Knowledge-Based Intelligent Electronic Systems, KES 1998, Adelaide, pp. 51–60 (1998)

    Google Scholar 

  18. Jae, H.C., Byung-Ju, Y., Whee, K.K., Hogil, L.: The dynamic modeling and analysis for an omnidirectional mobile robot with three caster wheels. In: 2003 IEEE International Conference on Robotics and Automation, pp. 521–527 (2003)

    Google Scholar 

  19. Andaluz, G.M., Andaluz, V.H., Terán, H.C., Arteaga, O., Chicaiza, F.A., Varela, J., Ortiz, J.S., Pérez, F., Rivas, D., Sánchez, J.S., Canseco, P.: Modeling dynamic of the human-wheelchair system applied to NMPC. In: Kubota, N., Kiguchi, K., Liu, H., Obo, T. (eds.) ICIRA 2016, Part II. LNCS, vol. 9835, pp. 179–190. Springer, Cham (2016). doi:10.1007/978-3-319-43518-3_18

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Víctor H. Andaluz , Christian P. Carvajal , Alex Santana G. , Víctor D. Zambrano or José A. Pérez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Andaluz, V.H., Carvajal, C.P., Santana G., A., Zambrano, V.D., Pérez, J.A. (2017). Navigation and Dynamic Control of Omnidirectional Platforms. In: Gao, Y., Fallah, S., Jin, Y., Lekakou, C. (eds) Towards Autonomous Robotic Systems. TAROS 2017. Lecture Notes in Computer Science(), vol 10454. Springer, Cham. https://doi.org/10.1007/978-3-319-64107-2_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64107-2_54

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64106-5

  • Online ISBN: 978-3-319-64107-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics