Abstract
This work proposes a Path Planning method using the virtual potential field, which provides a parameterized path in the space so that the omnidirectional mobile platform to reach the desired point and kinematic modeling of the platform to propose a Nonlinear Controller, that’s used to execute the path-following by means of Linear Algebra, for to correct the desired position and orientation of the omnidirectional platform use a dynamic compensation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Carrillo, A., Pelayo, S., Pelayo, J.: Development of a mobile service robot for classify objects and place them in containers. In: Power, Electronics and Computing (ROPEC) (2016)
Andaluz, V.H., Chicaiza, F.A., Gallardo, C., Quevedo, W.X., Varela, J., Sánchez, J.S., Arteaga, O.: Unity3D-MatLab simulator in real time for robotics applications. In: Paolis, L.T., Mongelli, A. (eds.) AVR 2016, Part I. LNCS, vol. 9768, pp. 246–263. Springer, Cham (2016). doi:10.1007/978-3-319-40621-3_19
Shenoy, P., Miller, K.J., Crawford, B., Rao, R.P.N.: Online electromyographic control of a robotic prosthesis. IEEE Trans. Biomed. Eng. 55, 1128–1135 (2008). doi:10.1109/TBME.2007.909536
Barraquand, J., Kavraki, L., Motwani, R., Latombe, J., Li, T., Raghavan, P.: A random sampling scheme for path planning. In: International Symposium on Robotics Research, vol. 6, pp. 249–264 (1996)
Andaluz, V.H., Ortiz, J.S., Chicaiza, F.A., Varela, J., Espinosa, E.G., Canseco, P.: Adaptive control of the human-wheelchair system through brain signals. In: Kubota, N., Kiguchi, K., Liu, H., Obo, T. (eds.) ICIRA 2016, Part II. LNCS, vol. 9835, pp. 223–234. Springer, Cham (2016). doi:10.1007/978-3-319-43518-3_22
Andaluz, V.H., Roberti, F., Toibero, J.M., Carelli, R., Wagner, B.: Adaptive dynamic path following control of an unicycle-like mobile robot. In: Jeschke, S., Liu, H., Schilberg, D. (eds.) ICIRA 2011, Part I. LNCS, vol. 7101, pp. 563–574. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25486-4_56
Overmars, M., Svestka, P.: A probabilistic learning approach to motion planning. In: Workshop in Algorithmic Foundations of Robotics, vol. 32, pp. 1–25 (1994)
Karray, A., Feki, M.: Tracking control of a mobile manipulator with fuzzy PD controller. In: IEEE Conference Publications: 2015 World Congress on Information Technology and Computer Applications (WCITCA), pp. 1–5 (2015)
Karray, A., Feki, M.: Control de seguimiento de un manipulador móvil con un controlador de PD difuso. In: Publicaciones de la Conferencia IEEE: Congreso Mundial de Tecnología de la Información y Aplicaciones Informáticas 2015 (WCITCA), pp. 1–5 (2015)
Wieber, P.: Trajectory free linear model predictive control for stable walking in the presence of strong perturbations. In: 6th IEEE-RAS International Conference on Humanoid Robots, Genova, pp. 137–142 (2006)
Rosales, A., Scaglia, G., Mut, V., Sciascio, F.D.: Seguimiento de trayectorias de robots móviles en entornos dinámicos-un enfoque de álgebra lineal, vol. 27, pp. 981–997. Universidad de Cambridge (2009)
Rómoli, S., Serrano, M.E., Ortiz, O.A., Vega, J.R.: Control de seguimiento de los perfiles de concentración en un bioreactor fed-batch usando metodología de álgebra lineal, pp. 162–171. Elsevier (2015)
Scaglia, G., Rosales, A., Quintero, L., Mut, V., Agarwal, R.: A linear-interpolation-based controller design for trajectory tracking of mobile robots. Elsevier Control Eng. Pract. 18, 318–329 (2010). https://doi.org/10.1016/j.conengprac.2009.11.011
Boyuan, L., Haiping, D., Weihua, L.: A potential field approach-based trajectory control for autonomous electric vehicles with in-wheel motors. IEEE Intell. Transp. Syst. Soc. PP(99),1–12 (2016)
Stentz, A.: Optimal and efficient path planning for partially-known environments. In: Proceedings of the 1994 IEEE International Conference on Robotics and Automation, pp. 3310–3317 (1994)
Veslin, E., Slama, J., Dutra, M.S., Slama, J.: Motion planning on mobile robots using differential flatness. IEEE Latin Am. Trans. 9, 1006–1011 (2011)
Watanabe, K.: Control of an omnidirectional mobile robot. In: Proceedings of the 1998 Second International Conference on Knowledge-Based Intelligent Electronic Systems, KES 1998, Adelaide, pp. 51–60 (1998)
Jae, H.C., Byung-Ju, Y., Whee, K.K., Hogil, L.: The dynamic modeling and analysis for an omnidirectional mobile robot with three caster wheels. In: 2003 IEEE International Conference on Robotics and Automation, pp. 521–527 (2003)
Andaluz, G.M., Andaluz, V.H., Terán, H.C., Arteaga, O., Chicaiza, F.A., Varela, J., Ortiz, J.S., Pérez, F., Rivas, D., Sánchez, J.S., Canseco, P.: Modeling dynamic of the human-wheelchair system applied to NMPC. In: Kubota, N., Kiguchi, K., Liu, H., Obo, T. (eds.) ICIRA 2016, Part II. LNCS, vol. 9835, pp. 179–190. Springer, Cham (2016). doi:10.1007/978-3-319-43518-3_18
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Andaluz, V.H., Carvajal, C.P., Santana G., A., Zambrano, V.D., Pérez, J.A. (2017). Navigation and Dynamic Control of Omnidirectional Platforms. In: Gao, Y., Fallah, S., Jin, Y., Lekakou, C. (eds) Towards Autonomous Robotic Systems. TAROS 2017. Lecture Notes in Computer Science(), vol 10454. Springer, Cham. https://doi.org/10.1007/978-3-319-64107-2_54
Download citation
DOI: https://doi.org/10.1007/978-3-319-64107-2_54
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-64106-5
Online ISBN: 978-3-319-64107-2
eBook Packages: Computer ScienceComputer Science (R0)