Abstract
This paper demonstrates and analyzes how CPGs can entrain joints of a praying mantis robot (MantisBot) to positive velocity feedback resulting in a duration change of a leg’s stance phase. We use a model of a single leg segment, as well as previously presented design techniques to understand how the gain of positive velocity feedback to the CPGs should be modulated to successfully implement the active reaction (AR) during walking. Our results suggest that the AR simplifies the descending control of walking speed, naturally producing the asymmetrical changes in stance and swing phase duration seen in walking animals. We implement the AR in neural circuits of a dynamic network that control leg joints of MantisBot, and experiments confirm that the robot modulates its walking speed as the simple model predicted. Aggregating the data from hundreds of steps in different walking directions show that the robot changes speed by altering the duration of stance phase while swing phase remains unaffected, as seen in walking animals.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Cruse, H.: Which parameters control the leg movement of a walking insect?: I. Velocity control during the stance phase. J. Exp. Biol. 116, 343–355 (1985)
Gruhn, M., von Uckermann, G., Westmark, S., et al.: Control of stepping velocity in the stick insect Carausius morosus. J. Neurophysiol. 102, 1180–1192 (2009). doi:10.1152/jn.00257.2009
Gabriel, J.P., Büschges, A.: Control of stepping velocity in a single insect leg during walking. Philos. Trans. A Math. Phys. Eng. Sci. 365, 251–271 (2007). doi:10.1098/rsta.2006.1912
Foth, E., Graham, D.: Influence of loading parallel to the body axis on the walking coordination of an insect – I. Ipsilateral effects. Biol. Cybern. 47, 17–23 (1983). doi:10.1007/BF00340065
Ryckebusch, S., Laurent, G.: Rhythmic patterns evoked in locust leg motor neurons by the muscarinic agonist pilocarpine. J. Neurophysiol. 69, 1583–1595 (1993)
Büschges, A., Schmitz, J., Bässler, U.: Rhythmic patterns in the thoracic nerve cord of the stick insect induced by pilocarpine. J. Exp. Biol. 198, 435–456 (1995)
Daun-Gruhn, S., Tóth, T.I.: An inter-segmental network model and its use in elucidating gait-switches in the stick insect. J. Comput. Neurosci. (2010). doi:10.1007/s10827-010-0300-1
Sauer, A.E., Büschges, A., Stein, W.: Role of presynaptic inputs to proprioceptive afferents in tuning sensorimotor pathways of an insect joint control network. J. Neurobiol. 32, 359–376 (1997). doi:10.1002/(SICI)1097-4695(199704)32:4<359:AID-NEU1>3.0.CO;2-5
Berendes, V., Zill, S.N., Büschges, A., Bockemühl, T.: Speed-dependent interplay between local pattern-generating activity and sensory signals during walking in Drosophila. J. Exp. Biol. (2016). doi:10.1242/jeb.146720
Bässler, U.: Functional principles of pattern generation for walking movements of stick insect forelegs: the role of the femoral chordotonal organ afferences. J. Exp. Biol. 136, 125–147 (1988)
Akay, T., Büschges, A.: Load signals assist the generation of movement-dependent reflex reversal in the femur-tibia joint of stick insects. J. Neurophysiol. 96, 3532–3537 (2006)
Szczecinski, N.S., Hunt, A.J., Quinn, R.D.: Design process and tools for dynamic neuromechanical models and robot controllers. Biol. Cybern. (2017). doi:10.1007/s00422-017-0711-4
Cofer, D.W., Cymbalyuk, G., Reid, J., et al.: AnimatLab: a 3D graphics environment for neuromechanical simulations. J. Neurosci. Methods 187, 280–288 (2010). doi:10.1016/j.jneumeth.2010.01.005
Hodgkin, A.L., Huxley, A.F., Katz, B.: Measurement of Current-voltage relations in the membrane of the giant axon of Loligo. J. Physiol. 116, 442–448 (1952)
Selverston, A.I., Moulins, M.: Oscillatory neural networks. Annu. Rev. Physiol. 47, 29–48 (1985)
Szczecinski, N.S., Hunt, A.J., Quinn, R.D.: Design methodology for synthetic nervous systems that control legged robot locomotion. Front. Neurorobot. (2017, in review)
Szczecinski, N.S., Getsy, A.P., Martin, J.P., et al.: MantisBot is a robotic model of visually guided motion in the praying mantis. Arthropod. Struct. Dev. (2017). doi:10.1016/j.asd.2017.03.001
Martin, J.P., Guo, P., Mu, L., et al.: Central-complex control of movement in the freely walking cockroach. Curr. Biol. 25, 2795–2803 (2015). doi:10.1016/j.cub.2015.09.044
Szczecinski, N.S., Hunt, A.J., Quinn, R.D.: Design process and tools for dynamic neuromechanical models and robot controllers. Biol. Cybern. (2017). doi:10.1007/s00422-017-0711-4
Bässler, U.: The femur-tibia control system of stick insects–a model system for the study of the neural basis of joint control. Brain Res. Rev. 18, 207–226 (1993)
Schmitz, J., Bartling, C., Brunn, D.E., et al.: Adaptive properties of hard-wired neuronal systems. Verh dt zool 88(2), 95–105 (1995)
Schmitz, J., Schneider, A., Schilling, M., Cruse, H.: No need for a body model: positive velocity feedback for the control of an 18-DOF robot walker. Appl. Bionics Biomech. 5, 135–147 (2008). doi:10.1080/11762320802221074
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Szczecinski, N.S., Quinn, R.D. (2017). MantisBot Changes Stepping Speed by Entraining CPGs to Positive Velocity Feedback. In: Mangan, M., Cutkosky, M., Mura, A., Verschure, P., Prescott, T., Lepora, N. (eds) Biomimetic and Biohybrid Systems. Living Machines 2017. Lecture Notes in Computer Science(), vol 10384. Springer, Cham. https://doi.org/10.1007/978-3-319-63537-8_37
Download citation
DOI: https://doi.org/10.1007/978-3-319-63537-8_37
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-63536-1
Online ISBN: 978-3-319-63537-8
eBook Packages: Computer ScienceComputer Science (R0)