Abstract
When solving engineering problems through biomimetic design, a lack of knowledge of biology often impedes the translation of biological ideas into engineering principles. Specific challenges are the identification, selection and abstraction of relevant biological information. The use of engineering terminology to search for relevant biological information is hypothesised to contribute to the adventitious character of biomimetics. Alternatively, a holistic approach is proposed where a division is made between the analysis of biological research papers and the decomposition of the engineering problem. The aim of a holisitic approach is to take into account the importance of context during analogical problem solving and provide a theoretical framework for the development of Computer-Aided Biomimetics (CAB) tools. Future work will focus on the development of tools that support engineers during the analysis of biological research papers and modelling of biological systems by providing relevant biological knowledge.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Artiga, M.: New perspectives on artifactual and biological functions. Appl. Ontol. 11, 1–9 (2016)
Barthlott, W., Neinhuis, C.: Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202(1), 1–8 (1997). doi:10.1007/s004250050096
Bensaude-Vincent, B.: A cultural perspective on biomimetics. In: Nature, pp. 1–12. InTech (2011). doi:10.5772/10546
Bogatyrev, N., Bogatyrev, O.A.: TRIZ-based algorithm for Biomimetic design. Procedia Eng. 131, 377–387 (2015)
Brereton, M.: Distributed cognition in engineering design: negotiating between abstract and material representations. In: Goldschmidt, G., Porter, W.L. (eds.) Design representation, pp. 83–103. Springer, London (2004). doi:10.1007/978-1-85233-863-3_4
Cavallucci, D., Rousselot, F., Zanni, C.: Linking contradictions and laws of engineering system evolution within the triz framework. Creat. Innov. Manage. 18(2), 71–80 (2009). doi:10.1111/j.1467-8691.2009.00515.x
Chakrabarti, A.: Supporting analogical transfer in biologically inspired design. In: Goel, A., McAdams, D., Stone, R. (eds.) Biologically Inspired Design, pp. 201–220. Springer, London (2014). doi:10.1007/978-1-4471-5248-4_8
Chandrasekaran, B., Josephson, J.R.: Function in device representation. Eng. Comput. 16, 162–177 (2000)
Csikszentmihalyi, M.: FLOW: The Psychology of Optimal Experience. HarperCollins, New York (1990)
Deldin, J.-M., Schuhknecht, M.: The AskNature database: enabling solutions in biomimetic design. In: Goel, A., McAdams, D., Stone, R. (eds.) Biologically Inspired Design, pp. 17–27. Springer, London (2014). doi:10.1007/978-1-4471-5248-4_3
Dellieu, L., Sarrazin, M., Simonis, P., Deparis, O., Vigneron, J.P.: A two-in-one superhydrophobic and anti-reflective nanodevice in the grey cicada Cicada orni (Hemiptera). J. Appl. Phys. 116(2), 24701 (2014). doi:10.1063/1.4889849. American Institute of Physics
Durand, F., Helms, M., Tsenn, J., McTigue, E., McAdams, D.A., Linsey, J.S.: Teaching students to innovate: evaluating methods for bioinspired design and their impact on design self efficacy. In: 27th International Conference on Design Theory and Methodology, vol. 7 (2015). doi:10.1115/DETC2015-47716
Elsevier OA-STM-Corpus: An open access corpus of scientific, technical, and medical content, 11 January 2015. https://github.com/elsevierlabs/OA-STM-Corpus
Fayemi, P. E., Maranzana, N., Aoussat, A., Bersano, G.: Bio-inspired design characterisation and its links with problem solving tools. In: Proceedings of DESIGN 2014, pp. 173–182 (2014)
Fayemi, P.-E., Maranzana, N., Aoussat, A., Bersano, G.: Assessment of the biomimetic toolset—design spiral methodology analysis. In: Chakrabarti, A. (ed.) ICoRD’15 – Research into Design Across Boundaries Volume 2. Smart Innovation, Systems and Technologies, vol. 35. Springer, New Delhi (2015a). doi:10.1007/978-81-322-2229-3_3
Fayemi, P.-E., Maranzana, N., Aoussat, A., Chekchak, T., Bersano, G.: Modeling biological systems to facilitate their selection during a bio-inspired design process. In: DS 80-2 Proceedings of the 20th International Conference on Engineering Design (ICED 2015), Milan, Italy, vol. 2, pp. 225–234 (2015b)
Feng, X.Q., Gao, X., Wu, Z., Jiang, L., Zheng, Q.S.: Superior water repellency of water strider legs with hierarchical structures: experiments and analysis. Langmuir 23(9), 4892–4896 (2007). doi:10.1021/la063039b
Fish, F.E., Beneski, J.T.: Evolution and bio-inspired design: natural limitations. In: Goel, A.K., McAdams, D.A., Stone, R.B. (eds.) Stone Biologically Inspired Design, Chap. 12, pp. 287–312. Springer, London (2014). doi:10.1007/978-1-4471-5248-4_12
Garland Jr., T.: Trade-offs. Curr. Biol. 24(2), R60–R61 (2014)
Gentner, D., Kurtz, K.J.: Relations, objects, and the composition of analogies. Cogn. Sci. 30(4), 609–642 (2006). doi:10.1207/s15516709cog0000_60
Helfman Cohen, Y., Reich, Y.: Biomimetic Design Method for Innovation and Sustainability. Springer, Cham (2016). doi:10.1007/978-3-319-33997-9
Helms, M., Vattam, S.S., Goel, A.K.: Biologically inspired design: process and products. Des. Stud. 30(5), 606–622 (2009). doi:10.1016/j.destud.2009.04.003
Hirtz, J., Stone, R.B., Mcadams, D.A., Szykman, S., Wood, K.L.: A functional basis for engineering design: reconciling and evolving previous efforts. Res. Eng. Des. 13, 65–82 (2002)
Inkermann, D., Stechert, C., Löffler, S., Vietor, T.: A 24. IASTED Technology Conferences/705: ARP/706: RA/707: NANA/728: CompBIO, March 2016. http://doi.org/10.2316/P.2010.706-031
Jacbos, S.R., Nichol, E.C., Helms, M.E.: ‘Where are we now and where are we going?’ The BioM innovation database. J. Mech. Des. 136(11), 111101 (2014)
Kaiser, M.K., Hashemi Farzaneh, H., Lindemann, U.: An approach to support searching for biomimetic solutions based on system characteristics and its environmental interactions. In: Proceedings of International Design Conference, DESIGN, vol. DS 70, pp. 969–978 (2012)
Kaiser, M.K., Hashemi Farzaneh, H., Lindemann, U.: BioSCRABBLE - the role of different types of search terms when searching for biological inspiration in biological research articles. In: International DESIGN Conference, Dubrovnik, Croatia, pp. 241–250 (2014)
Khoo, C.S.G., Chan, S., Niu, Y.: Extracting causal knowledge from a medical database using graphical patterns. In: Proceedings of 38th Annual Meeting ofthe Association for Computational Linguistics, pp. 336–343 (2000)
Khoo, C.S.G., Kornfit, J., Oddy, R.N., Myaeng, S.H.: Automatic extraction of cause-effect information from newspaper text without knowledge-based inferencing. Literary Linguist. Comput. 13, 177–186 (1998)
Kruiper, R., Chen-Burger, J., Desmulliez, M.P.Y.: Computer-aided biomimetics. In: Lepora, Nathan F.F., Mura, A., Mangan, M., Verschure, P.F.M.J., Desmulliez, M., Prescott, T.J. (eds.) Living Machines 2016. LNCS, vol. 9793, pp. 131–143. Springer, Cham (2016). doi:10.1007/978-3-319-42417-0_13
Lepora, N., Verschure, P., Prescott, T.: The state of the art in biomimetics. Bioinspir. Biomim. 8, 1–11 (2013). doi:10.3905/jpm.1974.408489
Markman, A.B., Gentner, D.: Structure mapping in the comparison process. Am. J. Psychol. 113(4), 501–538 (2000). doi:10.2307/1423470
Massey, A., Wallace, W.: Understanding and facilitating group problem structuring and formulation: mental representations, interaction, and representation aids. Decis. Support Syst. 17(4), 253–274 (1996)
Meyers, A.: Surface allows self-cleaning, 10 December 2015. AskNature: https://asknature.org/strategy/surface-allows-self-cleaning/#.WMlpAm-LSUk
Millot, S., Vandewalle, P., Parmentier, E.: Sound production in red-bellied piranhas (Pygocentrus nattereri, Kner): an acoustical, behavioural and morphofunctional study. JEB 214, 3613–3618 (2011). doi:10.1242/jeb.061218
Mizoguchi, R., Kitamura, Y., Borgo, S.: A unifying definition for artifact and biological functions. Appl. Ontol. 11(2), 129–154 (2016). doi:10.3233/AO-160165
Nagel, J.K.S., Stone, R.B., McAdams, D.A.: A thesaurus for bioinspired engineering design. In: Goel, A., McAdams, D., Stone, R. (eds.) Biologically Inspired Design, Chap. 4, pp. 63–94. Springer, London (2014). doi:10.1007/978-1-4471-5248-4_4
Neinhuis, C., Barthlott, W.: Characterization and distribution of water-repellent, self-cleaning plant surfaces. Ann. Bot. 79(6), 667–677 (1997). doi:10.1006/anbo.1997.0400
Pahl, G., Beitz, W., Feldhusen, J., Grote, K.H.: Engineering Design: A Systematic Approach. Springer, London (2007)
Perlman, M.: Changing the mission of theories of teleology: DOs and DON’Ts for thinking about function. In: Functions in Biological and Artificial Worlds, pp. 17–36 (2009)
Rugaber, S., Bhati, S., Goswami, V., Spiliopoulou, E., Azad, S., Koushik, S., Kulkarni, R., Kumble, M., Sarathy, S., Goel, A.K.: Knowledge extraction and annotation for cross-domain textual case-based reasoning in biologically inspired design. In: Goel, A., Díaz-Agudo, M., Roth-Berghofer, T. (eds.) Case-Based Reasoning Research and Development (ICCBR). LNCS, vol. 9969. pp. 342–355. Springer, Cham (2016). doi:10.1007/978-3-319-47096-2_23
Salgueiredo, C.F.: Modeling biological inspiration for innovative design. In: 20th International Product Development Management Conference, Paris, France, June 2013
Sartori, J., Pal, U., Chakrabarti, A.: A methodology for supporting “transfer” in biomimetic design. Artif. Intell. Eng. Des. Anal. Manuf. 24(4), 483–506 (2010). doi:10.1017/S0890060410000351
Schön, D.A.: The Reflective Practitioner, How Professionals Think in Action. Basic Books, Inc., New York (1983). ISBN: 0-465-06878-2
Shu, L.H., Cheong, H.: A natural language approach to biomimetic design. In: Goel, A., McAdams, D., Stone, R. (eds.) Biologically Inspired Design, pp. 29–62. Springer, London (2014). doi:10.1007/978-1-4471-5248-4_3
Stricker, H.M.: Bionik in der Produktentwicklung unter der Berücksichtigung menschlichen Verhaltens. Ph.D. thesis Lehrstuhl Für Produktentwicklung, TU Munich (2006)
Taylor, G.K., Holbrook, R.I., de Perera, T.B.: Fractional rate of change of swim-bladder volume is reliably related to absolute depth during vertical displacements in teleost fish. J. Roy. Soc. Interface 7, 1379–1382 (2010). doi:10.1098/rsif.2009.0522. The Royal Society
Vandevenne, D., Verhaegen, P.-A., Dewulf, S. Duflou, J.R.: A scalable approach for the integration of large knowledge repositories in the biologically-inspired design process. In: International Conference on Engineering Design, ICED 2011 (2011)
Vandevenne, D., Verhaegen, P.-A., Dewulf, S., Duflou, J.R.: Product and organism aspects for scalable systematic biologically-inspired design. Procedia Eng. 131, 784–791 (2015)
Vandevenne, D., Pieters, T., Duflou, J.R.: Enhancing novelty with knowledge-based support for biologically-inspired design. Des. Stud. (2016a). doi:10.1016/j.destud.2016.05.003
Vandevenne, D., Verhaegen, P.-A., Dewulf, S., Duflou, J.R.: SEABIRD: scalable search for systematic biologically inspired design. Artif. Intell. Eng. Des. Anal. Manuf. 30, 78–95 (2016b)
Vattam, S., Wiltgen, B., Helms, M., Goel, A.K., Yen, J.: DANE: fostering creativity in and through biologically inspired design. In: Taura, T., Nagai, Y. (eds.) Design Creativity 2010, vol. 8, pp. 115–122. Springer, London (2011). doi:10.1007/978-0-85729-224-7_16
Vattam, S.S., Goel, A.K.: Foraging for inspiration: understanding and supporting the online information seeking practices of biologically inspired designers. In: Proceeding of the ASME IDETC/CIE 2011, 28–31 August 2011
Vattam, S.S., Goel, A.K.: An information foraging model of interactive analogical retrieval. In: Proceedings of 35th Annual Meeting of Cognitive Science Society (2013a)
Vattam, S.S., Goel, A.K.: Biological solutions for engineering problems: a study in cross-domain textual case-based reasoning. In: Proceedings of 21st International Conference on Case Based Reasoning 2013, pp. 343–357 (2013b). doi:10.1007/978-3-642-39056-2_25
Verhaegen, P.A., D’Hondt, J., Vandevenne, D., Dewulf, S., Duflou, J.R.: Identifying candidates for design-by-analogy. Comput. Ind. 62, 446–459 (2011)
Vincent, J.F.V., Mann, D.L.: Systematic technology transfer from biology to engineering. Philos. Trans. Ser. A Math. Phys. Eng. Sci. 360(1791), 159–173 (2002). doi:10.1098/rsta.2001.0923
Vincent, J.F.V., Bogatyreva, O.A., Bogatyreva, N.R., Bowyer, A., Pahl, A.-K.: Biomimetics: its practice and theory. J. Roy. Soc. Interface 3(9), 471–482 (2006)
Vincent, J.F.V.: An ontology of biomimetics. In: Goel, A., McAdams, D., Stone, R. (eds.) Biologically Inspired Design, pp. 269–286. Springer, London (2014). doi:10.1007/978-1-4471-5248-4_11
Vincent, J.F.V.: The trade-off: a central concept for biomimetics. Bioinspired, Biomimetic and Nanobiomaterials, (2016). doi:10.1680/jbibn.16.00005
Wanieck, K., Fayemi, P.-E., Maranzana, N., Zollfrank, C., Jacobs, S.: Biomimetics and its tools. Bioinspir. Biom. Nanobiomater. (2017). doi:10.1680/jbibn.16.00010
Wendrich, R.E.: Multimodal interaction, collaboration, and synthesis in design and engineering processing. In: Proceedings of International Design Conference, DESIGN, vol. DS 70, pp. 579–588 (2012)
Wendrich, R.E., Kruiper, R.: Keep it real: on tools, emotion, cognition and intentionality in design. In: Proceedings of International Design Conference, DESIGN, Dubrovnik, Croatia, 16–19 May 2016
Acknowledgements
The authors are grateful to Dr. Ing. Robert E. Wendrich and Dr. Rupert Soar for their advice. This PhD research is funded by the EPSRC Centre for Doctoral Training in Embedded Intelligence and the School of Mathematical and Computer Sciences at Heriot-Watt University, Edinburgh, Scotland, UK.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Kruiper, R., Vincent, J.F.V., Chen-Burger, J., Desmulliez, M.P.Y. (2017). Towards Identifying Biological Research Articles in Computer-Aided Biomimetics. In: Mangan, M., Cutkosky, M., Mura, A., Verschure, P., Prescott, T., Lepora, N. (eds) Biomimetic and Biohybrid Systems. Living Machines 2017. Lecture Notes in Computer Science(), vol 10384. Springer, Cham. https://doi.org/10.1007/978-3-319-63537-8_21
Download citation
DOI: https://doi.org/10.1007/978-3-319-63537-8_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-63536-1
Online ISBN: 978-3-319-63537-8
eBook Packages: Computer ScienceComputer Science (R0)