Classifying DNA Microarray for Cancer Diagnosis via Method Based on Complex Networks | SpringerLink
Skip to main content

Classifying DNA Microarray for Cancer Diagnosis via Method Based on Complex Networks

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10362))

Included in the following conference series:

  • 2141 Accesses

Abstract

Performing microarray expression data classification can improve the accuracy of a cancer diagnosis. The varying technique including Support Vector Machines (SVMs), Neuro-Fuzzy models (NF), K-Nearest Neighbor (KNN), Neural Network (NN), and etc. have been applied to analyze microarray expression data. In this investigation, a novel complex network classifier is proposed to do such thing. To build the complex network classifier, we tried a hybrid method based on the Particle Swarm Optimization algorithm (PSO) and Genetic Programming (GP), of which GP aims at finding an optimal structure and PSO accomplishes the fine tuning of the parameters encoded in the proposed classifier. The experimental results conducted on Leukemia and Colon data sets are comparable to the state-of-the-art outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Albert, R., Barabasi, A.L.: Statistical mechanics of CNs. Rev. Mod. Phys. 74(1), 47 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Annunziato, M., Bertini, I., Felice, M., Pizzuti, S.: Evolving complex neural networks. In: Basili, R., Pazienza, M.T. (eds.) AI*IA 2007. LNCS, vol. 4733, pp. 194–205. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74782-6_18

    Chapter  Google Scholar 

  3. Barabasi, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, Y., Zhao, Y.: A novel ensemble of classifiers for microarray data classification. Appl. Soft Comput. 8(4), 1664–1669 (2008)

    Article  Google Scholar 

  5. Furey, T.S., Cristianini, N., Duffy, N., Bednarski, D.W., Schummer, M., Haussler, D.: Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 16(10), 906–914 (2000)

    Google Scholar 

  6. Jirapech Umpai, T., Aitken, S.: Feature selection and classification for microarray data analysis: evolutionary methods for identifying predictive genes. BMC Bioinform. 6(1), 148 (2005)

    Article  Google Scholar 

  7. Kennedy, J.: Particle swarm optimization. In: Sammut, C., Webb, G.I. (eds.) Encyclopedia of Machine Learning, pp. 760–766. Springer, US (2011)

    Google Scholar 

  8. Koza, J.R.: Genetic Programming: on the Programming of Computers by Means of Natural Selection, vol. 1. MIT Press, Cambridge (1992)

    Google Scholar 

  9. Lai, Y.C., Motter, A.E., Nishikawa, T.: Attacks and cascades in complex networks. In: Ben-Naim, E., Frauenfelder, H., Toroczkai, Z. (eds.) Complex Networks. Lecture Notes in Physics, vol. 650, pp. 299–310. Springer, Heidelberg

    Google Scholar 

  10. Mehmood, R., et al.: Clustering by fast search and merge of local density peaks for gene expression microarray data. Sci. Rep. 7, 45602 (2017)

    Article  Google Scholar 

  11. Niedzwiecki, D., Frankel, W.L., Venook, A.P., Ye, X., Friedman, P.N., Goldberg, R.M., Mayer, R.J., Colacchio, T.A., Mulligan, J.M., Davison, T.S., et al.: Association between results of a gene expression signature assay and recurrence-free interval in patients with stage II colon cancer in cancer and leukemia group B 9581(alliance). J. Clin. Oncol. 34(25), 3047–3053 (2016)

    Article  Google Scholar 

  12. Wang, Z., Palade, V., Xu, Y.: Neuro-fuzzy ensemble approach for microarray cancer gene expression data analysis. In: 2006 International Symposium on Evolving Fuzzy Systems, pp. 241–246. IEEE (2006)

    Google Scholar 

  13. Zanin, M., Papo, D., Sousa, P.A., Menasalvas, E., Nicchi, A., Kubik, E., Boccaletti, S.: Combining complex networks and data mining: why and how. Phys. Rep. 635, 1–44 (2016)

    Article  MathSciNet  Google Scholar 

  14. Huang, D.S.: Systematic Theory of Neural Networks for Pattern Recognition (in Chinese), Publishing House of Electronic Industry of China, May 1996

    Google Scholar 

  15. Ji, Z., Wu, D., Zhao, W., et al.: Systemic modeling myeloma-osteoclast interactions under normoxic/hypoxic condition using a novel computational approach. Sci. Rep. 5 (2015)

    Google Scholar 

  16. Wang, B., Zhang, J., Chen, P., et al.: Prediction of peptide drift time in ion mobility mass spectrometry from sequence-based features. BMC Bioinform. 14(8), S9 (2013)

    Article  Google Scholar 

  17. Huang, D.S., Yu, H.-J.: Normalized feature vectors: a novel alignment-free sequence comparison method based on the numbers of adjacent amino acids. IEEE/ACM Trans. Comput. Biol. Bioinform. 10(2), 457–467 (2013)

    Google Scholar 

  18. Ji, Z., Wu, G., Hu, M.: Feature selection based on adaptive genetic algorithm and SVM. Comput. Eng. 14, 072 (2009)

    Google Scholar 

Download references

Acknowledgment

This research was supported by the National Key Research and Development Program of China (No. 2016YFC0106000, 2016YFC0106001), the Youth Science and Technology Star Program of Jinan City (201406003), the Natural Science Foundation of Shandong Province (ZR2013FL002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Wu, P., Dong, L., Fan, Y., Wang, D. (2017). Classifying DNA Microarray for Cancer Diagnosis via Method Based on Complex Networks. In: Huang, DS., Jo, KH., Figueroa-García, J. (eds) Intelligent Computing Theories and Application. ICIC 2017. Lecture Notes in Computer Science(), vol 10362. Springer, Cham. https://doi.org/10.1007/978-3-319-63312-1_66

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63312-1_66

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63311-4

  • Online ISBN: 978-3-319-63312-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics