Abstract
Performing microarray expression data classification can improve the accuracy of a cancer diagnosis. The varying technique including Support Vector Machines (SVMs), Neuro-Fuzzy models (NF), K-Nearest Neighbor (KNN), Neural Network (NN), and etc. have been applied to analyze microarray expression data. In this investigation, a novel complex network classifier is proposed to do such thing. To build the complex network classifier, we tried a hybrid method based on the Particle Swarm Optimization algorithm (PSO) and Genetic Programming (GP), of which GP aims at finding an optimal structure and PSO accomplishes the fine tuning of the parameters encoded in the proposed classifier. The experimental results conducted on Leukemia and Colon data sets are comparable to the state-of-the-art outcomes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Albert, R., Barabasi, A.L.: Statistical mechanics of CNs. Rev. Mod. Phys. 74(1), 47 (2002)
Annunziato, M., Bertini, I., Felice, M., Pizzuti, S.: Evolving complex neural networks. In: Basili, R., Pazienza, M.T. (eds.) AI*IA 2007. LNCS, vol. 4733, pp. 194–205. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74782-6_18
Barabasi, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)
Chen, Y., Zhao, Y.: A novel ensemble of classifiers for microarray data classification. Appl. Soft Comput. 8(4), 1664–1669 (2008)
Furey, T.S., Cristianini, N., Duffy, N., Bednarski, D.W., Schummer, M., Haussler, D.: Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 16(10), 906–914 (2000)
Jirapech Umpai, T., Aitken, S.: Feature selection and classification for microarray data analysis: evolutionary methods for identifying predictive genes. BMC Bioinform. 6(1), 148 (2005)
Kennedy, J.: Particle swarm optimization. In: Sammut, C., Webb, G.I. (eds.) Encyclopedia of Machine Learning, pp. 760–766. Springer, US (2011)
Koza, J.R.: Genetic Programming: on the Programming of Computers by Means of Natural Selection, vol. 1. MIT Press, Cambridge (1992)
Lai, Y.C., Motter, A.E., Nishikawa, T.: Attacks and cascades in complex networks. In: Ben-Naim, E., Frauenfelder, H., Toroczkai, Z. (eds.) Complex Networks. Lecture Notes in Physics, vol. 650, pp. 299–310. Springer, Heidelberg
Mehmood, R., et al.: Clustering by fast search and merge of local density peaks for gene expression microarray data. Sci. Rep. 7, 45602 (2017)
Niedzwiecki, D., Frankel, W.L., Venook, A.P., Ye, X., Friedman, P.N., Goldberg, R.M., Mayer, R.J., Colacchio, T.A., Mulligan, J.M., Davison, T.S., et al.: Association between results of a gene expression signature assay and recurrence-free interval in patients with stage II colon cancer in cancer and leukemia group B 9581(alliance). J. Clin. Oncol. 34(25), 3047–3053 (2016)
Wang, Z., Palade, V., Xu, Y.: Neuro-fuzzy ensemble approach for microarray cancer gene expression data analysis. In: 2006 International Symposium on Evolving Fuzzy Systems, pp. 241–246. IEEE (2006)
Zanin, M., Papo, D., Sousa, P.A., Menasalvas, E., Nicchi, A., Kubik, E., Boccaletti, S.: Combining complex networks and data mining: why and how. Phys. Rep. 635, 1–44 (2016)
Huang, D.S.: Systematic Theory of Neural Networks for Pattern Recognition (in Chinese), Publishing House of Electronic Industry of China, May 1996
Ji, Z., Wu, D., Zhao, W., et al.: Systemic modeling myeloma-osteoclast interactions under normoxic/hypoxic condition using a novel computational approach. Sci. Rep. 5 (2015)
Wang, B., Zhang, J., Chen, P., et al.: Prediction of peptide drift time in ion mobility mass spectrometry from sequence-based features. BMC Bioinform. 14(8), S9 (2013)
Huang, D.S., Yu, H.-J.: Normalized feature vectors: a novel alignment-free sequence comparison method based on the numbers of adjacent amino acids. IEEE/ACM Trans. Comput. Biol. Bioinform. 10(2), 457–467 (2013)
Ji, Z., Wu, G., Hu, M.: Feature selection based on adaptive genetic algorithm and SVM. Comput. Eng. 14, 072 (2009)
Acknowledgment
This research was supported by the National Key Research and Development Program of China (No. 2016YFC0106000, 2016YFC0106001), the Youth Science and Technology Star Program of Jinan City (201406003), the Natural Science Foundation of Shandong Province (ZR2013FL002).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Wu, P., Dong, L., Fan, Y., Wang, D. (2017). Classifying DNA Microarray for Cancer Diagnosis via Method Based on Complex Networks. In: Huang, DS., Jo, KH., Figueroa-García, J. (eds) Intelligent Computing Theories and Application. ICIC 2017. Lecture Notes in Computer Science(), vol 10362. Springer, Cham. https://doi.org/10.1007/978-3-319-63312-1_66
Download citation
DOI: https://doi.org/10.1007/978-3-319-63312-1_66
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-63311-4
Online ISBN: 978-3-319-63312-1
eBook Packages: Computer ScienceComputer Science (R0)