Event Categorization and Key Prospect Identification from Storylines | SpringerLink
Skip to main content

Event Categorization and Key Prospect Identification from Storylines

  • Conference paper
  • First Online:
Geographical Information Systems Theory, Applications and Management (GISTAM 2016)

Abstract

Event analysis and prospect identification in social media is challenging due to endless amount of information generated daily. While current research focuses on detecting events, there is no clear guidance on how those events should be processed such that they are meaningful to a human analyst. There are no clear ways to detect prospects from social media either. In this paper, we present DISTL, an event processing and prospect identifying platform. It accepts as input a set of storylines (a sequence of entities and their relationships) and processes them as follows: (1) uses different algorithms (LDA, SVM, information gain, rule sets) to identify themes from storylines; (2) identifies top locations and times in storylines and combines with themes to generate events that are meaningful in a specific scenario for categorizing storylines; and (3) extracts top prospects as people and organizations from data elements contained in storylines. The output comprises sets of events in different categories and storylines under them along with top prospects identified. DISTL uses in-memory distributed processing that scales to high data volumes and categorizes generated storylines in near real-time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agarwal, C., Subbian, K.: Event detection in social streams. In: SDM, pp. 624–635 (2012)

    Google Scholar 

  2. Apache and Spark (2015a). https://spark.apache.org/docs/latest/mllib-clustering.html#latent-dirichlet-allocation-lda

  3. Apache and Spark (2015b). https://spark.apache.org/docs/latest/mllib-linear-methods.html#inear-support-vector-machines-svms

  4. Apache and Spark. Spark programming guide (2015c). http://spark.apache.org/docs/latest/programming-guide.html

  5. Apache, Spark, and Packages (2015). https://github.com/wxhc3sc6opm8m1hxbomy/spark-mrmr-feature-selection

  6. Chae, J., Thom, D., Bosch, H., Jang, Y., Maciejewski, R., Ebert, D., Ertl, T.: Spatiotemporal social media analytics for abnormal event detection and examination using seasonal-trend decomposition. In: 2012 IEEE Conference on Visual Analytics Science and Technology (VAST), pp. 143–152 (2012)

    Google Scholar 

  7. Chen, F., Neill, D.B.: Non-parametric scan statistics for event detection and forecasting in heterogeneous social media graph. In: ACM SIGKDD, pp. 1166–1175 (2014)

    Google Scholar 

  8. Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V.: Developing language processing components with gate version 8. University of Sheffield Department of Computer Science (2014)

    Google Scholar 

  9. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters. Commun. ACM 51(1), 107–113 (2008)

    Article  Google Scholar 

  10. Weng, J., Lee, B.-S.: Event detection in twitter, pp. 401–408. AAAI (2011)

    Google Scholar 

  11. Keskisärkkä, R., Blomqvist, E.: Semantic complex event processing for social media monitoring-a survey. In: Proceedings of Social Media and Linked Data for Emergency Response (SMILE) Co-Located with the 10th Extended Semantic Web Conference, Montpellier, France, CEUR Workshop Proceedings (2013)

    Google Scholar 

  12. Lappas, T., Vieira, M.R., Gunopulos, D., Tsotras, V.J.: On the spatiotemporal burstiness of terms. Proc. VLDB Endow. 5(9), 836–847 (2012)

    Article  Google Scholar 

  13. Leetaru, K., Schrodt, P.A.: GDELT: global database of events, language, and tone. In: ISA Annual Convention (2013)

    Google Scholar 

  14. Li, C., Sun, A., Datta, A.: Twevent: segment-based event detection from tweets. In: Conference on Information and Knowledge Management, pp. 155–164 (2012a)

    Google Scholar 

  15. Li, R., Lei, K.H., Khadiwala, R., Chang, K.: Tedas: a twitter-based event detection and analysis system. In: Proceedings of 28th IEEE Conference on Data Engineering (ICDE), pp. 1273–1276 (2012b)

    Google Scholar 

  16. Petrovic, S., Osborne, M., McCreadie, R., Macdonald, C., Ounis, I., Shrimpton, L.: Can twitter replace newswire for breaking news? In: 7th International AAAI Conference on Weblogs and Social Media (ICWSM) (2013)

    Google Scholar 

  17. Pohl, D., Bouchachia, A., Hellwagner, H.: Automatic sub-event detection in emergency management using social media. In: Proceedings of the 21st International Conference Companion on World Wide Web (WWW 2012 Companion), pp. 683–686, New York, NY, USA. ACM (2012)

    Google Scholar 

  18. Radinsky, K., Horvitz, E.: Mining the web to predict future events. In: WSDM, pp. 255–264 (2013)

    Google Scholar 

  19. Reuter, T., Buza, L.D.K., Schmidt-Thieme, L.: Scalable event-based clustering of social media via record linkage techniques. In: ICWSM (2011)

    Google Scholar 

  20. Saha, A., Sindhwani, V.: Learning evolving and emerging topics in social media: a dynamic NMF approach with temporal regularization. In: Proceedings of the Fifth ACM International Conference on Web Search and Data Mining (WSDM 2012), pp. 693–702, New York, NY, USA. ACM (2012)

    Google Scholar 

  21. Sakaki, T., Okazaki, M., Matsuo, Y.: Earthquake shakes twitter users: real-time event detection by social sensors. In: WWW, pp. 851–860 (2010)

    Google Scholar 

  22. Shukla, M., Santos, R.D., Chen, F., Lu, C.-T.: Discrn: a distributed storytelling framework for intelligence analysis. Virginia Tech Computer Science Technical report (2015)

    Google Scholar 

  23. Walther, M., Kaisser, M.: Geo-spatial event detection in the twitter stream. In: Serdyukov, P., Braslavski, P., Kuznetsov, S.O., Kamps, J., Rüger, S., Agichtein, E., Segalovich, I., Yilmaz, E. (eds.) ECIR 2013. LNCS, vol. 7814, pp. 356–367. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36973-5_30

    Chapter  Google Scholar 

  24. Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauly, M., Franklin, M.J., Shenker, S., Stoica, I.: Resilient distributed datasets: a fault-tolerant abstraction for in-memory cluster computing. In: Presented as Part of the 9th USENIX Symposium on Networked Systems Design and Implementation (NSDI 2012), pp. 15–28, San Jose, CA. USENIX (2012)

    Google Scholar 

  25. Zhao, L., Chen, F., Dai, J., Lu, C.-T., Ramakrishnan, N.: Unsupervised spatial events detection in targeted domains with applications to civil unrest modeling. PLOS One 9(10), e110206 (2014)

    Article  Google Scholar 

  26. Zhao, L., Chen, F., Lu, C.-T., Ramakishnan, N.: Spatiotemporal event forecasting in social media. In: SDM, pp. 963–971 (2015)

    Google Scholar 

  27. Zhou, X., Chen, L.: Event detection over twitter social media streams. VLDB J. 23(3), 381–400 (2014)

    Article  MathSciNet  Google Scholar 

  28. Li, J., Tsang, E.P.K.: Investment decision making using FGP: a case study. In: Proceedings of the 1999 Congress on Evolutionary Computation (CEC 1999), vol. 2, no. 2, pp. 1259–1279 (1999)

    Google Scholar 

  29. Shukla, M., Santos, R.D., Fong, A., Lu, C.-T.: DISTL: distributed in-memory spatio-temporal event-based storyline categorization platform in social media. In: Proceedings of the 2nd International Conference on Geographical Information Systems Theory, Applications and Management, pp. 39–50, Italy, Rome (2016)

    Google Scholar 

  30. Cheh, J.J., Weinberg, R.S., Yook, K.C.: An application of an artificial neural network investment system to predict takeover targets. J. Appl. Bus. Res. (JABR) 15(4), 33–46 (2013)

    Article  Google Scholar 

  31. Geum, Y., Lee, S., Yoon, B., Park, Y.: Identifying and evaluating strategic partners for collaborative R&D: index-based approach using patents and publications. Technovation 33(6), 211–224 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manu Shukla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Shukla, M., Fong, A., Dos Santos, R., Lu, CT. (2017). Event Categorization and Key Prospect Identification from Storylines. In: Grueau, C., Laurini, R., Rocha, J. (eds) Geographical Information Systems Theory, Applications and Management. GISTAM 2016. Communications in Computer and Information Science, vol 741. Springer, Cham. https://doi.org/10.1007/978-3-319-62618-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62618-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62617-8

  • Online ISBN: 978-3-319-62618-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics