Change Detection and Classification of Seismic Damage with LiDAR and RADAR Surveys in Supporting Emergency Planning. The Case of Amatrice | SpringerLink
Skip to main content

Change Detection and Classification of Seismic Damage with LiDAR and RADAR Surveys in Supporting Emergency Planning. The Case of Amatrice

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2017 (ICCSA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10407))

Included in the following conference series:

Abstract

The spread of new satellite and LiDAR data is recently leading to the development of effective methodologies to support the monitoring and management of disaster risks, assessing the level of damages in the very early post-event phase. The increasing availability of SAR images and the diffusion of LiDAR data due to technologies such as solutions such as drones offers the opportunity to experiment new techniques for monitoring the territory. The paper will examine the case study of Amatrice (Central Italy), the Municipality most affected by the seismic swarm started in August 2016, and discuss the results obtained with the technique of interferometric differentiation and detection of change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. FAO: The state of the world’s land and water resources for food and agriculture (SOLAW) - Managing systems at risk. Rome and Earthscan. Food and Agriculture Organization of the United Nations, London (2011)

    Google Scholar 

  2. Casas, G.L., Scorza, F.: Sustainable planning: a methodological toolkit. In: Gervasi, O., et al. (eds.) ICCSA 2016. LNCS, vol. 9786, pp. 627–635. Springer, Cham (2016). doi:10.1007/978-3-319-42085-1_53

    Chapter  Google Scholar 

  3. Amato, F., Martellozzo, F., Nolè, G., Murgante, B.: Preserving cultural heritage by supporting landscape planning with quantitative predictions of soil consumption. J. Cult. Heritage 23, 44–54 (2017). doi:10.1016/j.culher.2015.12.009

    Article  Google Scholar 

  4. International Guidelines on Urban and Territorial Planning. Nairobi (2015)

    Google Scholar 

  5. Amato, L., Dello Buono, D., Izzi, F., La Scaleia, G., Maio, D.: HELP - an early warning dashboard system, built for the prevention, mitigation and assessment of disasters, with a flexible approach using open data and open source technologies (2016)

    Google Scholar 

  6. Scardaccione, G., Scorza, F., Casas, G.L., Murgante, B.: Spatial autocorrelation analysis for the evaluation of migration flows: the Italian case. In: Taniar, D., Gervasi, O., Murgante, B., Pardede, E., Apduhan, B.O. (eds.) ICCSA 2010. LNCS, vol. 6016, pp. 62–76. Springer, Heidelberg (2010). doi:10.1007/978-3-642-12156-2_5

    Chapter  Google Scholar 

  7. Murgante, B., Tilio, L., Lanza, V., Scorza, F.: Using participative GIS and e-tools for involving citizens of Marmo Platano-Melandro area in European programming activities. J. Balk. Near East. Stud. 13(1), 97–115 (2011). doi:10.1080/19448953.2011.550809. Taylor & Francis, London. ISSN 1944-8953

    Article  Google Scholar 

  8. Las Casas, G., Murgante, B., Scorza, F.: Regional local development strategies benefiting from open data and open tools and an outlook on the renewable energy sources contribution. In: Papa, R., Fistola, R. (eds.) Smart Energy in the Smart City: Urban Planning for a Sustainable Future, pp. 275–290. Springer, Heidelberg (2016). doi:10.1007/978-3-319-31157-9_14. ISBN 978-3-319-31155-5

  9. Las Casas, G., Scorza, F.: Discrete spatial assessment of multi-parameter phenomena in low density region: the Val D’Agri case. In: Gervasi, O., et al. (eds.) ICCSA 2015. LNCS, vol. 9157, pp. 813–824. Springer, Cham (2015). doi:10.1007/978-3-319-21470-2_59

    Chapter  Google Scholar 

  10. Sarma, K., Dey, K.S., Bahuguna, S., Shah, A., Nayak, D., Bhattacharyya, S.R.: Application of remote sensing for the study of mangrove assemblages in Sunderbans, West Bengal. In: IAPRS, Hyderabad, India, vol. XXXIV, Part 7, published on CD (2002)

    Google Scholar 

  11. Testo Unico delle Norme per l’edilizia: Classificazione sismica del territorio italiano adottata in seguito al Decreto Legislativo n. 112 del 1998 e Decreto del Presidente della Repubblica n. 380 del 2001 (2001)

    Google Scholar 

  12. Copernicus, February 2017. https://scihub.copernicus.eu/dhus/#/home

  13. Ministry of the Environment and the Protection of the Territory and Sea (MATTM), Extraordinary Environmental Remote Surveillance Plan (PST-A) and Of its Extension (PST-A Extension 2008) (2008)

    Google Scholar 

  14. Geo Portale Nazionale, February 2017. http://www.pcn.minambiente.it/mattm/

  15. Region, Civil Protection of Friuli Venezia Giulia (2016)

    Google Scholar 

  16. Lasaponara, R., Murgante, B., Elfadaly, A., Qelichi, M.M., Shahraki, S.Z., Wafa, O., Attia, W.: Spatial open data for monitoring risks and preserving archaeological areas and landscape: case studies at Kom el Shoqafa, Egypt and Shush, Iran. Sustainability 9, 572 (2017). doi:10.3390/su9040572

    Article  Google Scholar 

  17. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C: The Art of Scientific Computing, 2nd edn. Cambridge University Press, New York (1992)

    MATH  Google Scholar 

  18. Goldstein, R., Gabriel, Α.: Grossed orbits interferometry: theory and experimental (1998)

    Google Scholar 

  19. Prati, C., Rocca, F., Monti-Guarnieri, A., Damonti, E.: Seismic migration for SAR focusing: interferometrical applications. IEEE Trans. GRS Geosci. Remote Sens. 28(4), 627–640 (1990). New York

    Article  Google Scholar 

  20. Goldstein, R.M., Werner, C.L.: Radar interferogram phase filtering for geophysical applications. Geophys. Res. Lett. 25, 4035–4038 (1998)

    Article  Google Scholar 

  21. Small, D., Schubert, A.: Guide to ASAR Geocoding, RSL-ASAR-GC-AD, Issue 1.0 (2008)

    Google Scholar 

  22. Costantini, M.: A novel phase unwrapping method based on network programming. IEEE Tran. Geosci. Remote Sens. 36, 813–821 (1998)

    Article  Google Scholar 

  23. Massonet, D., Monti-Guarnieri, A., Prati, C., Ferretti, A.: InSAR Principles: Guidelines for SAR Interferometry Processing and Interpretation, ESA TM-19 (2007)

    Google Scholar 

  24. Qin, R., Tian, J., Reinartz, P.: 3D change detection – approaches and applications. ISPRS J. Photogram. Remote Sens. 122, 41–56 (2016)

    Article  Google Scholar 

  25. Singh, A.: Digital change detection techniques using remotely-sensed data. Int. J. Remote Sens. 10, 989–1003 (1989)

    Article  Google Scholar 

  26. Tian, J., Chaabouni-Chouayakh, H., Reinartz, P., Krauss, T., d’Angelo, P.: Automatic 3D change detection based on optical satellite stereo imagery. Int. Arch. Photogram. Remote Sens. Spat. Inf. Sci. 38(Part 7B), 586–591 (2010)

    Google Scholar 

Download references

Acknowledgements

Authors are grateful to the Civil Protection of Friuli Venezia Giulia region, for providing LiDAR dataset analyzed in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beniamino Murgante .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Saganeiti, L., Amato, F., Potleca, M., Nolè, G., Vona, M., Murgante, B. (2017). Change Detection and Classification of Seismic Damage with LiDAR and RADAR Surveys in Supporting Emergency Planning. The Case of Amatrice. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2017. ICCSA 2017. Lecture Notes in Computer Science(), vol 10407. Springer, Cham. https://doi.org/10.1007/978-3-319-62401-3_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62401-3_53

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62400-6

  • Online ISBN: 978-3-319-62401-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics