Abstract
The ability of assessing the affective information content is of increasing interest in applications of computer science, e.g. in human machine interfaces, recommender systems, social robots. In this project, the architecture of a semantic system of emotions is designed and implemented, to quantify the emotional content of short sentences by evaluating and aggregating the semantic proximity of each term in the sentence from the basic emotions defined in a psychological model of emotions (e.g. Ekman, Plutchick, Lovheim). Our model is parametric with respect to the semantic proximity measures, focusing on web-based proximity measures, where data needed to evaluate the proximity can be retrieved from search engines on the Web. To test the performances of the model, a software system has been developed to both collect the statistical data and perform the emotion analysis. The system automatizes the phases of sentence preprocessing, search engine query, results parsing, semantic proximity calculation and the final phase of ranking of emotions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Chiancone, A., Niyogi, R., et al.: Improving link ranking quality by quasi common neighbourhood. In: IEEE CPS 2015, International Conference on Computational Science and Its Applications (2015)
Chiancone, A., Madotto, A., et al.: Multistrain bacterial model for link prediction. In: Proceedings of 11th International Conference on Natural Computation IEEE ICNC 2015. CFP15CNC-CDR (2015). ISBN: 978-1-4673-7678-5
Chiancone, A., Franzoni, V., Li, Y., Markov, K., Milani, A.: Leveraging zero tail in neighbourhood based link prediction. In: 2015 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT), vol. 3, pp. 135–139 (2015)
Franzoni, V., Poggioni, V., Zollo, F.: Automated book classification according to the emotional tags of the social network Zazie. In: ESSEM, AI*IA, vol. 1096, pp. 83–94. CEUR-WS (2013)
Franzoni, V., Leung, C.H.C., Li, Y., Milani, A., Pallottelli, S.: Context-based image semantic similarity. In: 12th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), Zhangjiajie, pp. 1280–1284 (2015)
Franzoni, V., Milani, A.: Context extraction by multi-path traces in semantic networks, In: CEUR-WS, Proceedings of RR 2015 Doctoral Consortium, Berlin (2015)
Deng, J.J., Leung, C.H.C., Milani, A., Chen, L.: Emotional states associated with music: classification, prediction of changes, and consideration in recommendation. ACM Trans. Interact. Intell. Syst. 5, 4 (2015)
Leung, C.H.C., Li, Y., Milani, A., Franzoni, V.: Collective evolutionary concept distance based query expansion for effective web document retrieval. In: Murgante, B., Misra, S., Carlini, M., Torre, C.M., Nguyen, H.-Q., Taniar, D., Apduhan, B.O., Gervasi, O. (eds.) ICCSA 2013. LNCS, vol. 7974, pp. 657–672. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39649-6_47
Matsuo, Y., Sakaki, T., Uchiyama, K., Ishizuka, M.: Graph-based word clustering using a web search engine. University of Tokio (2006)
Franzoni, V., Milani, A.: A semantic comparison of clustering algorithms for the evaluation of web-based similarity measures. In: Gervasi, O., et al. (eds.) ICCSA 2016. LNCS, vol. 9790, pp. 438–452. Springer, Cham (2016). doi:10.1007/978-3-319-42092-9_34
Wu, L., Hua, X.S., Yu, N., Ma, W.Y., Li, S.: Flickr Distance. Microsoft Research Asia, Beijing (2008)
Budanitsky, A., Hirst, G.: Semantic distance in wordnet: an experimental, application-oriented evaluation of five measures. In: Proceedings of Workshop on WordNet and Other Lexical Resources, Pittsburgh, PA, USA, p. 641. North American Chapter of the Association for Computational Linguistics (2001)
Miller, G.A., Beckwith, R., Fellbaum, C., Gross, D., Miller, K.: Introduction to wordnet: an on-line lexical database (1993)
Tasso, S., Pallottelli, S., Ferroni, M., Bastianini, R., Laganà, A.: Taxonomy management in a federation of distributed repositories: a chemistry use case. In: Murgante, B., Gervasi, O., Misra, S., Nedjah, N., Rocha, A.M.C., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2012. LNCS, vol. 7333, pp. 358–370. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31125-3_28
Tasso, S., Pallottelli, S., Bastianini, R., Lagana, A.: federation of distributed and collaborative repositories and its application on science learning objects. In: Murgante, B., Gervasi, O., Iglesias, A., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2011. LNCS, vol. 6784, pp. 466–478. Springer, Heidelberg (2011). doi:10.1007/978-3-642-21931-3_36
Newman, M.E.J.: Fast Algorithm for Detecting Community Structure in Networks. University of Michigan, Ann Arbor (2003)
Pallottelli, S., Tasso, S., Pannacci, N., Costantini, A., Lago, N.F.: Distributed and collaborative learning objects repositories on grid networks. In: Taniar, D., Gervasi, O., Murgante, B., Pardede, E., Apduhan, B.O. (eds.) ICCSA 2010. LNCS, vol. 6019, pp. 29–40. Springer, Heidelberg (2010). doi:10.1007/978-3-642-12189-0_3
Franzoni, V., Milani, A.: PMING distance: a collaborative semantic proximity measure. In: WI–IAT, vol. 2, pp. 442–449. IEEE/WIC/ACM (2012)
Franzoni, V., Milani, A.: Heuristic semantic walk. In: Murgante, B., Misra, S., Carlini, M., Torre, C.M., Nguyen, H.-Q., Taniar, D., Apduhan, B.O., Gervasi, O. (eds.) ICCSA 2013. LNCS, vol. 7974, pp. 643–656. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39649-6_46
Franzoni, V., Milani, A., Pallottelli, S.: Multi-path traces in semantic graphs for latent knowledge elicitation. In: Proceedings of 11th International Conference on Natural Computation, IEEE ICNC (2015). ISBN: 978-1-4673-7678-5
Franzoni, V., Milani, A.: Heuristic semantic walk for concept chaining in collaborative networks. Int. J. Web Inf. Syst. 10(1), 85–103 (2014)
Church, K.W., Hanks, P.: Word association norms, mutual information and lexicography. In: ACL, p. 27 (1989)
Turney P.: Mining the web for synonyms: PMI versus LSA on TEOFL. In: Proceedings of ECML (2001)
Lin, J.: Divergence measures based on the Shannon entropy. IEEE Trans. Inf. Theor. 37(1), 145–151 (1991)
Cilibrasi, R., Vitanyi, P.: The Google Similarity Distance. ArXiv.org (2004)
Joyce, J.M.: Kullback-leibler divergence. In: Lovric, M. (ed.) International Encyclopedia of Statistical Science. Springer (2011)
Manning, D., Schutze, H.: Foundations of Statistical Natural Language Processing. The MIT Press, London (2002)
Thurstone, L.: Attitudes can be measured. Am. J. Sociol. 33, 529–554 (1928)
Stouffer, S.A., Guttman, L., et al.: Measurement and prediction. In: Studies in Social Psychology in World War II, vol. 4. Princeton University Press (1950)
Bartholomeu, D., Silva, M., Montiel, J.: Improving the likert scale of the children’s social skills test by means of rasch model. Psychology 7, 820–828 (2016)
Osgood, C.E., Suci, G., Tannenbaum, P.: The Measurement of Meaning. University of Illinois Press, Urbana (1957)
Franzoni, V., Leung, Clement H.C., Li, Y., Mengoni, P., Milani, A.: Set similarity measures for images based on collective knowledge. In: Gervasi, O., Murgante, B., Misra, S., Gavrilova, M.L., Rocha, A.M.A.C., Torre, C., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2015. LNCS, vol. 9155, pp. 408–417. Springer, Cham (2015). doi:10.1007/978-3-319-21404-7_30
Bird, S., Loper, E., Klein, E.: Natural Language Processing with Python. O’Reilly Media Inc., Sebastopol (2009)
Strapparava, C., Mihalcea, R.: SemEval-2007 task 14: affective text. In: Proceedings of the 4th International Workshop on Semantic Evaluations (SemEval 2007), pp. 70–74. Association for Computational Linguistics, Stroudsburg, PA, USA (2007)
Franzoni, V., Milani, A.: Semantic context extraction from collaborative networks. In: IEEE International Conference on Computer Supported Cooperative Work in Design, CSCWD 2015. IEEE Press (2015)
Franzoni, V., Milani, A.: A pheromone-like model for semantic context extraction from collaborative networks. In: 2015 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT), Singapore, pp. 540–547. IEEE Press (2015)
Acknowledgements
Authors thank Mr. Ka Ho Tam, MSc and Dr. Yuanxi Li, PhD of the Hong Kong Baptist University, for the useful support and revision of the first version before submission.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Franzoni, V., Biondi, G., Milani, A. (2017). A Web-Based System for Emotion Vector Extraction. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2017. ICCSA 2017. Lecture Notes in Computer Science(), vol 10406. Springer, Cham. https://doi.org/10.1007/978-3-319-62398-6_46
Download citation
DOI: https://doi.org/10.1007/978-3-319-62398-6_46
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-62397-9
Online ISBN: 978-3-319-62398-6
eBook Packages: Computer ScienceComputer Science (R0)