Abstract
The global conditions for manufacturing are rapidly changing towards shorter product life cycles, more complexity and more turbulence. The manufacturing industry must meet the demands of this shifting environment and the increased global competition by ensuring high product quality, continuous improvement of processes and increasingly flexible organization. Technological developments towards smart manufacturing create big industrial data which needs to be leveraged for competitive advantages. We present a novel IT architecture for data-driven manufacturing, the Stuttgart IT Architecture for Manufacturing (SITAM). It addresses the weaknesses of traditional manufacturing IT by providing IT systems integration, holistic data analytics and mobile information provisioning. The SITAM surpasses competing reference architectures for smart manufacturing because it has a strong focus on analytics and mobile integration of human workers into the smart production environment and because it includes concrete recommendations for technologies to implement it, thus filling a granularity gap between conceptual and case-based architectures. To illustrate the benefits of the SITAM’s prototypical implementation, we present an application scenario for value-added services in the automotive industry.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
- 16.
- 17.
- 18.
- 19.
- 20.
- 21.
- 22.
- 23.
- 24.
- 25.
- 26.
- 27.
- 28.
- 29.
- 30.
- 31.
- 32.
- 33.
- 34.
- 35.
- 36.
- 37.
- 38.
- 39.
- 40.
- 41.
- 42.
- 43.
- 44.
- 45.
References
Westkämper, E.: Towards the Re-industrialization of Europe: A Concept for Manufacturing for 2030. Springer Science & Business Media, Heidelberg (2013)
MacDougall, W.: Industrie 4.0: Smart Manufacturing for the Future (2014)
Davis, J., Edgar, T., Porter, J., Bernaden, J., Sarli, M.: Smart manufacturing, manufacturing intelligence and demand-dynamic performance. Comput. Chem. Eng. 47, 145–156 (2012)
Shi, J., Wan, J., Yan, H., Suo, H.: A survey of cyber-physical systems. In: 2011 International Conference on Wireless Communications and Signal Processing, Piscataway, NJ, pp. 1–6. IEEE (2011)
Brettel, M., Friederichsen, N., Keller, M., Rosenberg, M.: How virtualization, decentralization and network building change the manufacturing landscape: an industry 4.0 perspective. Int. J. Sci. Eng. Technol. 8, 37–44 (2014)
Kemper, H.G., Baars, H., Lasi, H.: An integrated business intelligence framework. closing the gap between IT support for management and for production. In: Rausch, P., Sheta, A.F., Ayesh, A. (eds.) Business Intelligence and Performance Management. Advanced Information and Knowledge Processing, pp. 13–26. Springer, London (2013). doi:10.1007/978-1-4471-4866-1_2
Gölzer, P., Cato, P., Amberg, M.: Data processing requirements of industry 4.0 - use cases for big data applications. In: Proceedings of the 23rd European Conference on Information Systems (ECIS), Paper 61 (2015)
ISA: Enterprise-Control System Integration. ANSI/ISA 95.00.01-2000, Instrument Society of America (2000)
Gröger, C., Kassner, L., Hoos, E., Königsberger, J., Kiefer, C., Silcher, S., Mitschang, B.: The data-driven factory. Agile, learning and human-centric manufacturing. In: Proceedings of the 18th International Conference on Enterprise Information Systems (ICEIS), Scitepress (2016)
Vogel-Heuser, B., Kegel, G., Bender, K., Wucherer, K.: Global information architecture for industrial automation. Automatisierungstechnische Praxis 51, 108–115 (2009)
Minguez, J., Lucke, D., Jakob, M., Constantinescu, C., Mitschang, B.: Introducing SOA into production environments - the manufacturing service bus. In: Sihn, W., Becker, T., Kolev, I. (eds.) Proceedings of the 43rd CIRP International Conference on Manufacturing Systems (CMS), pp. 1117–1124. Neuer Wissenschaftlicher Verlag, Wien (2010)
Bracht, U., Hackenberg, W., Bierwirth, T.: A monitoring approach for the operative CKD logistics. wt Werkstattstechnik Online 101, 122–127 (2011)
Groover, M.P.: Automation, Production Systems, and Computer-Integrated Manufacturing, 3rd edn. Prentice Hall, Upper Saddle River (2008)
Hjelmervik, O.R., Wang, K.: Knowledge management in manufacturing: the soft side of knowledge systems. In: Wang, K., Kovacs, G.L., Wozny, M., Fang, M. (eds.) PROLAMAT 2006. IIFIP, vol. 207, pp. 89–94. Springer, Boston (2006). doi:10.1007/0-387-34403-9_10
Zuehlke, D.: Smart factory - towards a factory-of-things. Ann. Rev. Control 34, 129–138 (2010)
Weyrich, M., Ebert, C.: Reference architectures for the internet of things. IEEE Softw. 33, 112–116 (2016)
EFFRA: Platforms for connected factories of the future. Technical report, Communications Networks, Content and Technology Directorate-General DG CONNECT, A3 and European Factories of the Future Research Association (EFFRA) (2015)
VDI/VDE, ZVEI: Reference Architecture Model Industrie 4.0 (RAMI4.0). Technical report, Plattform Industrie 4.0 (2015)
Lin, S.W., Miller, B., Durand, J., Joshi, R., Didier, P., Chigani, A., Torenbeek, R., Duggal, D., Martin, R., Bleakley, G., King, A., Molina, J., Schrecker, S., Lembree, R., Soroush, H., Garbis, J., Crawford, M., Harper, E., Raman, K., Witten, B.: Industrial internet reference architecture. Technical report 1.7, Industrial Internet Consortium (2015)
Otto, B., Auer, S., Cirullies, J., Jürjens, J., Menz, N., Schon, J., Wenzel, S.: Industrial Data Space - Digitale Souveränitt für Daten. Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V, Technical report (2016)
Holtewert, P., Wutzke, R., Seidelmann, J., Bauernhansl, T.: Virtual fort knox - federative, secure and cloud-based platform for manufacturing. In: Cunha, P.F.D.C. (ed.) Economic Development and Wealth through Globally Competitive Manufacturing Systems, Procedia CIRP., Red Hook, NY, Curran, vol. 7, pp. 527–532 (2014)
Papazoglou, M.P., van den Heuvel, W.J., Mascolo, J.E.: A reference architecture and knowledge-based structures for smart manufacturing networks. IEEE Softw. 32, 61–69 (2015)
Erl, T.: Service Oriented Architecture: Principles of Service Design. The Prentice Hall Service-oriented Computing Series from Thomas Erl. Prentice Hall, Upper Saddle River (2008)
Silcher, S., Dinkelmann, M., Minguez, J., Mitschang, B.: Advanced product lifecycle management by introducing domain-specific service buses. In: Cordeiro, J., Maciaszek, L.A., Filipe, J. (eds.) ICEIS 2012. LNBIP, vol. 141, pp. 92–107. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40654-6_6
Evans, J.R., Lindner, C.H.: Business analytics: the next frontier for decision sciences. Decis. Line 43, 4–6 (2012)
Gröger, C., Schwarz, H., Mitschang, B.: The manufacturing knowledge repository. consolidating knowledge to enable holistic process knowledge management in manufacturing. In: Hammoudi, S. (ed.) Proceedings of the 16th International Conference on Enterprise Information Systems, Lisbon, Portugal, 39–51 April 2014, pp. 27–30. [S.l.], SciTePress (2014)
Aggarwal, C.C., Zhai, C.: An introduction to text mining. In: Aggarwal, C.C., Zhai, C. (eds.) Mining Text Data, pp. 1–10. Springer, New York (2012)
Kassner, L., Gröger, C., Mitschang, B., Westkämper, E.: Product life cycle analytics - next generation data analytics on structured and unstructured data. In: Teti, R. (ed.) 9th CIRP Conference on Intelligent Computation in Manufacturing Engineering - CIRPICME 14, Procedia CIRP., Red Hook, NY, Curran, vol. 33, pp. 35–40 (2015)
Kassner, L., Mitschang, B.: Exploring text classification for messy data: an industry use case for domain-specific analytics. In: Pitoura, E., Maabout, S., Koutrika, G., Marian, A., Tanca, L., Manolescu, I., Stefanidis, K. (eds.) Proceedings of the 19th International Conference on Extending Database Technology (EDBT), OpenProceedings.org, pp. 491–502 (2016)
Clevenger, N.C.: IPad in the Enterprise: Developing and Deploying Business Applications. Wiley, Indianapolis (2011)
Hoos, E., Gröger, C., Mitschang, B.: Mobile apps in engineering: a process-driven analysis of business potentials and technical challenges. In: Teti, R. (ed.) 9th CIRP Conference on Intelligent Computation in Manufacturing Engineering - CIRPICME 14, Procedia CIRP., Red Hook, NY, Curran, vol. 33 (2015)
Daniel, F., Matera, M.: Mashups: Concepts, Models and Architectures. Data-Centric Systems and Applications. Springer, Heidelberg (2014)
Francese, R., Risi, M., Tortora, G., Tucci, M.: Visual mobile computing for mobile end-users. IEEE Trans. Mob. Comput. 15, 1033–1046 (2015)
Whitman, M.E., Mattord, H.J.: Principles of Information Security, 3rd edn. Thomson Course Technology, Boston (2007)
Meehan, M.: SOA adoption marked by broad failure and wild success (2008)
Königsberger, J., Silcher, S., Mitschang, B.: SOA-GovMM: a meta model for a comprehensive SOA governance repository. In: Joshi, J.B.D. (ed.) Proceedings of the 2014 IEEE 15th International Conference on Information Reuse and Integration, Piscataway, NJ, pp. 187–194. IEEE (2014)
Sebastian-Coleman, L.: Measuring Data Quality for Ongoing Improvement: A Data Quality Assessment Framework. Elsevier Science, Burlington (2013)
Wang, R.Y., Strong, D.M.: Beyond accuracy: what data quality means to data consumers. J. Manag. Inf. Syst. 12, 5–33 (1996)
International Organization for Standardization: Industrial Automation Systems and Integration (1994)
International Organization for Standardization: Industrial Automation Systems and Integration - JT File Format Specification for 3D Visualization (2016)
Stonebraker, M.: Newsql: an alternative to NoSql and old SQL for new OLTP apps. Commun. ACM (2011)
Marz, N., Warren, J.: Big Data: Principles and Best Practices of Scalable Realtime Data Systems. Manning Publications Co., Greenwich (2015)
Nalepa, G., Bobek, S.: Rule-based solution for context-aware reasoning on mobile devices. Comput. Sci. Inf. Syst. 11, 171–193 (2014)
Bolchini, C., Curino, C.A., Quintarelli, E., Schreiber, F.A., Tanca, L.: A data-oriented survey of context models. ACM SIGMOD Rec. 36, 19 (2007)
Königsberger, J., Mitschang, B.: A semantically-enabled SOA governance repository. In: Proceedings of the 2016 IEEE 17th International Conference on Information Reuse and Integration. IEEE (2016)
Gröger, C., Schwarz, H., Mitschang, B.: Prescriptive analytics for recommendation-based business process optimization. In: Abramowicz, W., Kokkinaki, A. (eds.) BIS 2014. LNBIP, vol. 176, pp. 25–37. Springer, Cham (2014). doi:10.1007/978-3-319-06695-0_3
Acknowledgements
The authors would like to thank the German Research Foundation (DFG) as well as Daimler AG for financial support of this project as part of the Graduate School of Excellence advanced Manufacturing Engineering (GSaME) at the University of Stuttgart.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Kassner, L. et al. (2017). The Stuttgart IT Architecture for Manufacturing. In: Hammoudi, S., Maciaszek, L., Missikoff, M., Camp, O., Cordeiro, J. (eds) Enterprise Information Systems. ICEIS 2016. Lecture Notes in Business Information Processing, vol 291. Springer, Cham. https://doi.org/10.1007/978-3-319-62386-3_3
Download citation
DOI: https://doi.org/10.1007/978-3-319-62386-3_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-62385-6
Online ISBN: 978-3-319-62386-3
eBook Packages: Computer ScienceComputer Science (R0)