A Dual Processor Energy-Efficient Platform with Multi-core Accelerator for Smart Sensing | SpringerLink
Skip to main content

A Dual Processor Energy-Efficient Platform with Multi-core Accelerator for Smart Sensing

  • Conference paper
  • First Online:
Sensor Systems and Software (S-CUBE 2016)

Abstract

Energy-efficient computing has increasingly come into focus of research and industry over the last decade. Ultra-low-power architectures are a requirement for distributed sensing, wearable electronics, Internet of Things and consumer electronics. In this paper, we present a dual-mode platform that includes an ultra-low power Cortex Arm M4 microcontroller coupled with a highly energy efficient multi-core parallel processor. The platform is designed to maximize the energy efficiency in sensors applications by exploiting the Cortex Arm M4 to achieve ultra-low power processing and power management, and enables the multi-core processor to provide additional computational power for near-sensor data centric processing (i.e. accelerating Convolutional Neural Networks for image classification) increasing energy efficiency. The proposed platform enhances the application scenarios where on-board processing (i.e. without streaming out the sensor data) enables intensive computation to extract complex features. The platform is geared towards applications with limited energy budget, as for example in mobile or wearable scenarios where the devices are supplied by a battery. Experimental results confirm the energy efficiency of the platform, demonstrate the low power consumption, and the benefits of combining the two processing engines. Compared to a pure microcontroller platform we provide a boost of 80× in terms of computational power when running general purpose code and a boost of 560× when performing convolutions. Within a reasonable power budged of 20 mW compatible to battery-operated scenarios the system can perform 345 MOPS of general purpose code or 1.5 GOPS of convolutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 4804
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 6006
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gubbi, J., Buyya, R., Marusic, S., Palaniswami, M.: Internet of Things (IoT): a vision, architectural elements, and future directions. Future Gener. Comput. Syst. 29(7), 1645–1660 (2013)

    Article  Google Scholar 

  2. Da Xu, L., He, W., Li, S.: Internet of Things in industries: a survey. IEEE Trans. Ind. Inform. 10(4), 2233–2243 (2014)

    Article  Google Scholar 

  3. Govindaraju, V., Rao, C.: Machine Learning: Theory and Applications. Elsevier, Amsterdam (2013)

    Google Scholar 

  4. Michalski, R.S., Carbonell, J.G., Mitchell, T.M. (eds.) Machine learning: an artificial convolutional networks. In: Proceedings of the 52nd Annual Design Automation Conference, p. 108. ACM (2013)

    Google Scholar 

  5. Hashem, I.A.T., Yaqoob, I., Anuar, N.B., Mokhtar, S., Gani, A., Khan, S.U.: The rise of “big data” on cloud computing: review and open research issues. Inf. Syst. 47, 98–115 (2015)

    Article  Google Scholar 

  6. Hwang, K., Dongarra, J., Fox, G.C.: Distributed and Cloud Computing: From Parallel Processing to the Internet of Things. Morgan Kaufmann, Boston (2013)

    Google Scholar 

  7. Kahng, A.B., Kang, S., Kumar, R., Sartori, J.: Enhancing the efficiency of energy-constrained DVFS designs. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 21(10), 1769–1782 (2013)

    Article  Google Scholar 

  8. Wang, Z., Liu, Y., Sun, Y., Li, Y., Zhang, D., Yang, H.: An energy-efficient heterogeneous dual-core processor for Internet of Things. In: 2015 IEEE International Symposium on Circuits and Systems (ISCAS), Lisbon (2015)

    Google Scholar 

  9. Dreslinski, et al.: Centip3De: a 64-core, 3D stacked, near-threshold system. IEEE Micro 33(2), 8–16 (2013)

    Article  Google Scholar 

  10. Jeon, D., Kim, Y., Lee, I., Zhang, Z., Blaauw, D., Sylvester, D.: A 470 mV 2.7 mW feature extraction-accelerator for micro-autonomous vehicle navigation in 28 nm CMOS. In: Proceedings of 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pp. 166–168 (2013)

    Google Scholar 

  11. Yoon, J.-S., Kim, J.-H., Kim, H.-E., Lee, W.-Y., Kim, S.-H., Chung, K., Park, J.-S., Kim, L.-S.: A unified graphics and vision processor with a 0.89 uW/fps pose estimation engine for augmented reality. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 21(2), 206–216 (2013)

    Article  Google Scholar 

  12. Ghasemzadeh, H., Jafari, R.: Ultra low-power signal processing in wearable monitoring systems: a tiered screening architecture with optimal bit resolution. ACM Trans. Embed. Comput. Syst. (TECS) 13(1) (2013). Article No. 9

    Google Scholar 

  13. Magno, M., Brunelli, D., Sigrist, L., Andri, R., Cavigelli, L., Gomez, A., Benini, L.: InfiniTime: multi-sensor wearable bracelet with human body harvesting. Sustain. Comput. Inform. Syst. 11, 38–49 (2016)

    Google Scholar 

  14. Cavigelli, L., Magno, M., Benini, L.: Accelerating real-time embedded scene labeling with convolutional networks. In: Proceedings of the 52nd Annual Design Automation Conference, p. 108. ACM, June 2015

    Google Scholar 

  15. Magno, M., Spagnol, C., Benini, L., Popovici, E.: A low power wireless node for contact and contactless heart monitoring. Microelectron. J. 45(12), 1656–1664 (2014)

    Article  Google Scholar 

  16. Magno, M., Salvatore, G.A., Mutter, S., Farrukh, W., Troester, G., Benini, L.: Autonomous smartwatch with flexible sensors for accurate and continuous mapping of skin temperature. In: 2016 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 337–340. IEEE, May 2016

    Google Scholar 

  17. Rossi, D., et al.: A −1.8 V to 0.9 V body bias, 60 GOPS/W 4-core cluster in low-power 28 nm UTBB FD-SOI technology. In: SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S). IEEE, Rohnert Park (2015)

    Google Scholar 

  18. Conti, F., Benini, L.: A ultra-low-energy convolution engine for fast brain-inspired vision in multicore clusters. In: 2015 Design, Automation and Test in Europe Conference and Exhibition (DATE), Grenoble, pp. 683–688 (2015)

    Google Scholar 

  19. Dreslinski, R., Wieckowski, M., Blaauw, D., Sylvester, D., Mudge, T.: Near-threshold computing: reclaiming Moore’s law through energy efficient integrated circuits. In: Proceedings of the IEEE, vol. 98, pp. 253–266, February 2010

    Google Scholar 

  20. Ickes, N., Sinangil, Y., Pappalardo, F., Guidetti, E., Chandrakasan, A.P.: A 10 pJ/cycle ultra-low-voltage 32-bit microprocessor system-on-chip. In: 2011 Proceedings of the ESSCIRC (ESSCIRC), pp. 159–162. IEEE, September 2011

    Google Scholar 

  21. Bol, D., De Vos, J., Hocquet, C., Botman, F., Durvaux, F., Boyd, S., Flandre, D., Legat, J.-D.: SleepWalker: a 25-MHz 0.4-V Sub-mm2 7-uW/MHz microcontroller in 65-nm LP/GP CMOS for low-carbon wireless sensor nodes. IEEE J. Solid-State Circ. 48, 20–32 (2013)

    Article  Google Scholar 

  22. Botman, F., Vos, J.D., Bernard, S., Stas, F., Legat, J.-D., Bol, D.: Bellevue: a 50 MHz variable-width SIMD 32 bit microcontroller at 0.37 V for processing-intensive wireless sensor nodes. In: Proceedings of 2014 IEEE Symposium on Circuits and Systems, pp. 1207–1210 (2014)

    Google Scholar 

  23. Fujita, T., Tanaka, T., Sonoda, K., Kanda, K., Maenaka, K.: Ultra low power ASIC for R-R interval extraction on wearable health monitoring system. In: 2013 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3780–3783, October 2013

    Google Scholar 

  24. Gautschi, M., et al.: Tailoring instruction-set extensions for an ultra-low power tightly-coupled cluster of OpenRISC cores. In: 2015 IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-SoC), Daejeon, pp. 25–30 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Pullini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Pullini, A., Mach, S., Magno, M., Benini, L. (2017). A Dual Processor Energy-Efficient Platform with Multi-core Accelerator for Smart Sensing. In: Magno, M., Ferrero, F., Bilas, V. (eds) Sensor Systems and Software. S-CUBE 2016. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 205. Springer, Cham. https://doi.org/10.1007/978-3-319-61563-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61563-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61562-2

  • Online ISBN: 978-3-319-61563-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics