Reliable Homomorphic Matrix Disguising Scheme | SpringerLink
Skip to main content

Reliable Homomorphic Matrix Disguising Scheme

  • Conference paper
  • First Online:
Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS 2017)

Abstract

Computation outsourcing enables clients to outsource their expensive computational tasks to the cloud servers in pay-per-use manners. However once the tasks are outsourced, the clients will lose controls of the data and the calculation methods, which may result in severe security and reliability issues. The existed matrix encryption schemes for outsourcing application can be divided into two categories: encryption based schemes and disguising based schemes. It is impractical to be carried out in the cloud scenario that encryption based schemes require expensive encryption operations. The existed disguising based schemes ignore the disturbance such as errors or tolerances that are always introduced into science and engineering computations or analysis. In this paper, we proposed a new random sparse unitary matrix generation algorithm to overcome the disturbance problem, and reconstruct a new error-bounded matrix disguising schemes for the outsourcing matrix computation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 34319
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 42899
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC, vol. 9, pp. 169–178 (2009)

    Google Scholar 

  2. Atallah, M.J., Pantazopoulos, K.N., Spafford, E.H.: Secure outsourcing of some computations. Department of Computer Sciences. CSD-TR-96-074, Pudue University (1996)

    Google Scholar 

  3. Zhou, K., Ren, J.: ASO: cost-aware secure outsourcing of general computational problems (2015). arXiv preprint arXiv:1511.02375

  4. Rivest, R., Adleman, L., Dertouzos, M.: On data banks and privacy homomorphisms. In: Foundations of Secure Computation, pp. 169–180 (1978)

    Google Scholar 

  5. Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  6. Armknecht, F., Sadeghi, A.R.: A new approach for algebraically homomorphic encryption. IACR Cryptology ePrint Archive (2008)

    Google Scholar 

  7. Kawachi, A., Tanaka, K., Xagawa, K.: Multi-bit cryptosystems based on lattice problems. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 315–329. Springer, Heidelberg (2007). doi:10.1007/978-3-540-71677-8_21

    Chapter  Google Scholar 

  8. Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 24–43. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13190-5_2

    Chapter  Google Scholar 

  9. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-LWE and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22792-9_29

    Chapter  Google Scholar 

  10. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from standard LWE. SIAM J. Comput. 43(2), 831–871 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kiltz, E., Mohassel, P., Weinreb, E., Franklin, M.: Secure linear algebra using linearly recurrent sequences. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 291–310. Springer, Heidelberg (2007). doi:10.1007/978-3-540-70936-7_16

    Chapter  Google Scholar 

  12. Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: outsourcing computation to untrusted workers. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 465–482. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14623-7_25

    Chapter  Google Scholar 

  13. Fiore, D., Gennaro, R.: Publicly verifiable delegation of large polynomials and matrix computations, with applications. In: Proceedings of the 2012 ACM Conference on Computer and Communications Security, pp. 501–512. ACM (2012)

    Google Scholar 

  14. Atallah, M.J., Pantazopoulos, K.N., Rice, J.R., et al.: Secure outsourcing of scientific computations. Adv. Comput. 54, 216–272 (2002)

    Google Scholar 

  15. Benjamin, D., Atallah, M.: Private and cheating-free outsourcing of algebraic computations. In: 6th Conference on Privacy, Security, and Trust (PST), New Brunswick (2008)

    Google Scholar 

  16. Atallah, M., Frikken, K.: Securely outsourcing linear algebra computations. In: 5th ACM Symposium on Information, Computer and Communications Security, pp. 48–59 (2010)

    Google Scholar 

  17. Wang, C., Ren, K., Wang, J.: Secure and practical outsourcing of linear programming in cloud computing. In: INFOCOM (2011)

    Google Scholar 

  18. Yu, J., Wang, X., Gao, W.: Improvement and applications of secure outsourcing of scientific computations. J Ambient Intell. Hum. Comput. 6, 763–772 (2015)

    Article  Google Scholar 

  19. Hu, X., Tang, C.: Secure outsourced computation of the characteristic polynomial and eigen values of matrix. J. Cloud Comput. 4, 7 (2015)

    Google Scholar 

  20. Hu, X., et al.: Verifiable and secure outsourcing of matrix calculation and its application. Scientia sinica: Inf. 43(7), 842–852 (2013)

    MathSciNet  Google Scholar 

  21. Lütkepohl, H.: Handbook of Matrices. Wiley, New York (1996)

    Google Scholar 

  22. Zhang, X.: Matrix Analysis and Applications. Tsinghua and Springer Publishing house, Beijing (2004)

    Google Scholar 

Download references

Acknowledgments

This work is supported by the HBUT PHD Fund BSQD12027 and the Hubei Provincial Educational Research Plan D20131404.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonghui Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Chen, Y., Zhang, M., Xu, C. (2018). Reliable Homomorphic Matrix Disguising Scheme. In: Barolli, L., Enokido, T. (eds) Innovative Mobile and Internet Services in Ubiquitous Computing . IMIS 2017. Advances in Intelligent Systems and Computing, vol 612. Springer, Cham. https://doi.org/10.1007/978-3-319-61542-4_66

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61542-4_66

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61541-7

  • Online ISBN: 978-3-319-61542-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics