Abstract
Event logs constitute a rich source of information for several process analysis activities, which can take advantage of similar traces retrieval. The capability of relating semantic structures such as taxonomies to actions in the traces can enable trace comparison to work at different levels of abstraction and, therefore, to mask irrelevant details, and make the identification of similar traces much more flexible. In this paper, we propose a trace abstraction mechanism, which maps actions in the log traces to instances of ground concepts in a taxonomy, and then allows to generalize them up to the desired level. We also show how we have extended a trace similarity metric we defined in our previous work, in order to allow abstracted trace comparison as well. Our framework has been tested in the field of stroke management, where it has allowed us to cluster similar traces, corresponding to correct medical behaviors, abstracting from details, but still preserving the capabilities of identifying outlying situations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aamodt, A., Plaza, E.: Case-based reasoning: foundational issues, methodological variations and systems approaches. AI Commun. 7, 39–59 (1994)
Allen, J.F.: Towards a general theory of action and time. Artif. Intell. 23, 123–154 (1984)
Bose, R.P.J.C., Van der Aalst, W.: Context aware trace clustering: Towards improving process mining results. In: Proceedings of the SIAM International Conference on Data Mining, pp. 401–412. Springer (2009)
Bottrighi, A., Canensi, L., Leonardi, G., Montani, S., Terenziani, P.: Trace retrieval for business process operational support. Expert Syst. Appl. 55, 212–221 (2016)
Casati, F., Shan, M.-C.: Semantic analysis of business process executions. In: Jensen, C.S., Šaltenis, S., Jeffery, K.G., Pokorny, J., Bertino, E., Böhn, K., Jarke, M. (eds.) EDBT 2002. LNCS, vol. 2287, pp. 287–296. Springer, Heidelberg (2002). doi:10.1007/3-540-45876-X_19
Combi, C., Gozzi, M., Oliboni, B., Juarez, J.M., Marin, R.: Temporal similarity measures for querying clinical workflows. Artif. Intell. Med. 46, 37–54 (2009)
de Medeiros, A.K.A., van der Aalst, W.M.P., Pedrinaci, C.: Semantic process mining tools: Core building blocks. In: Golden, W., Acton, T., Conboy, K., van der Heijden, H., Tuunainen, V.K. (eds.) 2008 16th European Conference on Information Systems, ECIS 2008, Galway, Ireland, pp. 1953–1964 (2008)
Van der Aalst, W.: Process Mining: Discovery, Conformance and Enhancement of Business Processes. Springer, Heidelberg (2011)
Van der Aalst, W., van Dongen, B., Herbst, J., Maruster, L., Schimm, G., Weijters, A.: Workflow mining: A survey of issues and approaches. Data Knowl. Eng. 47, 237–267 (2003)
Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classication. Wiley-Interscience, New York (2001)
Francis, P., Leon, D., Minch, M., Podgurski, A.: Tree-based methods for classifying software failures. In: International Symposium on Software Reliability Engineering, pp. 451–462. IEEE Computer Society (2004)
Freska, C.: Temporal reasoning based on semi-intervals. Artif. Intell. 54, 199–227 (1992)
Grigori, D., Casati, F., Castellanos, M., Dayal, U., Sayal, M., Shan, M.C.: Business process intelligence. Comput. Ind. 53(3), 321–343 (2004)
IEEE Taskforce on Process Mining: Process Mining Manifesto. http://www.win.tue.nl/ieeetfpm. Accessed 4 Nov 2013
Jareevongpiboon, W., Janecek, P.: Ontological approach to enhance results of business process mining and analysis. Bus. Proc. Manag. J. 19(3), 459–476 (2013)
Kapetanakis, S., Petridis, M., Knight, B., Ma, J., Bacon, L.: A case based reasoning approach for the monitoring of business workflows. In: Bichindaritz, I., Montani, S. (eds.) ICCBR 2010. LNCS (LNAI), vol. 6176, pp. 390–405. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14274-1_29
Lanz, A., Weber, B., Reichert, M.: Workflow time patterns for process-aware information systems. In: Bider, I., Halpin, T., Krogstie, J., Nurcan, S., Proper, E., Schmidt, R., Ukor, R. (eds.) BPMDS/EMMSAD -2010. LNBIP, vol. 50, pp. 94–107. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13051-9_9
Levenshtein, A.: Binary codes capable of correcting deletions, insertions and reversals. Sov. Phys. Dokl. 10, 707–710 (1966)
Montani, S., Leonardi, G.: Retrieval and clustering for business process monitoring: results and improvements. In: Agudo, B.D., Watson, I. (eds.) ICCBR 2012. LNCS (LNAI), vol. 7466, pp. 269–283. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32986-9_21
Montani, S., Leonardi, G.: Retrieval and clustering for supporting business process adjustment and analysis. Inf. Syst. 40, 128–141 (2014)
Montani, S., Leonardi, G., Striani, M., Quaglini, S., Cavallini, A.: Multi-level abstraction for trace comparison and process discovery. Expert Syst. Appl. 81, 398–409 (2017). doi:10.1016/j.eswa.2017.03.063
Palmer, M., Wu, Z.: Verb semantics for English-Chinese translation. Mach. Transl. 10, 59–92 (1995)
Pedrinaci, C., Domingue, J.: Towards an ontology for process monitoring and mining. In: Hepp, M., Hinkelmann, K., Karagiannis, D., Klein, R., Stojanovic, N. (eds.) Proceedings of the Workshop on Semantic Business Process and Product Lifecycle Management SBPM 2007, held in Conjunction with the 3rd European Semantic Web Conference (ESWC 2007), Innsbruck, Austria, June 7, 2007, vol. 251 of CEUR Workshop Proceedings (2007)
Pedrinaci, C., Domingue, J., Brelage, C., van Lessen, T., Karastoyanova, D., Leymann, F.: Semantic business process management: Scaling up the management of business processes. In: Proceedings of the 2th IEEE International Conference on Semantic Computing (ICSC 2008), August 4–7, 2008, Santa Clara, California, USA, pp. 546–553. IEEE Computer Society (2008)
Reichert, M., Dadam, P.: Adeptflex-supporting dynamic changes of workflows without losing control. J. Intell. Inf. Syst. 10, 93–129 (1998)
Sharan, R., Shamir, R.: CLICK: A clustering algorithm for gene expression analysis. In: Proceedings of the International Conference on Intelligent Systems for Molecular Biology, pp. 260–268 (2000)
Sokal, R., Michener, C.: A statistical method for evaluating systematic relationships. Univ. Kansas Sci. Bull. 38, 1409–1438 (1958)
Aalst, W.M.P., Beer, H.T., Dongen, B.F.: Process mining and verification of properties: An approach based on temporal logic. In: Meersman, R., Tari, Z. (eds.) OTM 2005. LNCS, vol. 3760, pp. 130–147. Springer, Heidelberg (2005). doi:10.1007/11575771_11
Weber, B., Wild, W.: Towards the agile management of business processes. In: Althoff, K.-D., Dengel, A., Bergmann, R., Nick, M., Roth-Berghofer, T. (eds.) WM 2005. LNCS (LNAI), vol. 3782, pp. 409–419. Springer, Heidelberg (2005). doi:10.1007/11590019_48
Yip, A.M., Chan, T.F., Mathew, T.P.: A Scale Dependent Model for Clustering by Optimization of Homogeneity and Separation, CAM Technical Report 03–37. Department of Mathematics, University of California, Los Angeles (2003)
Yujian, L., Bo, L.: A normalized levenshtein distance metric. IEEE Trans. Pattern Anal. Mach. Intell. 29, 1085–1091 (2007)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Montani, S., Striani, M., Quaglini, S., Cavallini, A., Leonardi, G. (2017). Semantic Trace Comparison at Multiple Levels of Abstraction. In: Aha, D., Lieber, J. (eds) Case-Based Reasoning Research and Development. ICCBR 2017. Lecture Notes in Computer Science(), vol 10339. Springer, Cham. https://doi.org/10.1007/978-3-319-61030-6_15
Download citation
DOI: https://doi.org/10.1007/978-3-319-61030-6_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-61029-0
Online ISBN: 978-3-319-61030-6
eBook Packages: Computer ScienceComputer Science (R0)