Semantic Trace Comparison at Multiple Levels of Abstraction | SpringerLink
Skip to main content

Semantic Trace Comparison at Multiple Levels of Abstraction

  • Conference paper
  • First Online:
Case-Based Reasoning Research and Development (ICCBR 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10339))

Included in the following conference series:

Abstract

Event logs constitute a rich source of information for several process analysis activities, which can take advantage of similar traces retrieval. The capability of relating semantic structures such as taxonomies to actions in the traces can enable trace comparison to work at different levels of abstraction and, therefore, to mask irrelevant details, and make the identification of similar traces much more flexible. In this paper, we propose a trace abstraction mechanism, which maps actions in the log traces to instances of ground concepts in a taxonomy, and then allows to generalize them up to the desired level. We also show how we have extended a trace similarity metric we defined in our previous work, in order to allow abstracted trace comparison as well. Our framework has been tested in the field of stroke management, where it has allowed us to cluster similar traces, corresponding to correct medical behaviors, abstracting from details, but still preserving the capabilities of identifying outlying situations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aamodt, A., Plaza, E.: Case-based reasoning: foundational issues, methodological variations and systems approaches. AI Commun. 7, 39–59 (1994)

    Google Scholar 

  2. Allen, J.F.: Towards a general theory of action and time. Artif. Intell. 23, 123–154 (1984)

    Article  MATH  Google Scholar 

  3. Bose, R.P.J.C., Van der Aalst, W.: Context aware trace clustering: Towards improving process mining results. In: Proceedings of the SIAM International Conference on Data Mining, pp. 401–412. Springer (2009)

    Google Scholar 

  4. Bottrighi, A., Canensi, L., Leonardi, G., Montani, S., Terenziani, P.: Trace retrieval for business process operational support. Expert Syst. Appl. 55, 212–221 (2016)

    Article  Google Scholar 

  5. Casati, F., Shan, M.-C.: Semantic analysis of business process executions. In: Jensen, C.S., Šaltenis, S., Jeffery, K.G., Pokorny, J., Bertino, E., Böhn, K., Jarke, M. (eds.) EDBT 2002. LNCS, vol. 2287, pp. 287–296. Springer, Heidelberg (2002). doi:10.1007/3-540-45876-X_19

    Chapter  Google Scholar 

  6. Combi, C., Gozzi, M., Oliboni, B., Juarez, J.M., Marin, R.: Temporal similarity measures for querying clinical workflows. Artif. Intell. Med. 46, 37–54 (2009)

    Article  Google Scholar 

  7. de Medeiros, A.K.A., van der Aalst, W.M.P., Pedrinaci, C.: Semantic process mining tools: Core building blocks. In: Golden, W., Acton, T., Conboy, K., van der Heijden, H., Tuunainen, V.K. (eds.) 2008 16th European Conference on Information Systems, ECIS 2008, Galway, Ireland, pp. 1953–1964 (2008)

    Google Scholar 

  8. Van der Aalst, W.: Process Mining: Discovery, Conformance and Enhancement of Business Processes. Springer, Heidelberg (2011)

    Book  MATH  Google Scholar 

  9. Van der Aalst, W., van Dongen, B., Herbst, J., Maruster, L., Schimm, G., Weijters, A.: Workflow mining: A survey of issues and approaches. Data Knowl. Eng. 47, 237–267 (2003)

    Article  Google Scholar 

  10. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classication. Wiley-Interscience, New York (2001)

    MATH  Google Scholar 

  11. Francis, P., Leon, D., Minch, M., Podgurski, A.: Tree-based methods for classifying software failures. In: International Symposium on Software Reliability Engineering, pp. 451–462. IEEE Computer Society (2004)

    Google Scholar 

  12. Freska, C.: Temporal reasoning based on semi-intervals. Artif. Intell. 54, 199–227 (1992)

    Article  MathSciNet  Google Scholar 

  13. Grigori, D., Casati, F., Castellanos, M., Dayal, U., Sayal, M., Shan, M.C.: Business process intelligence. Comput. Ind. 53(3), 321–343 (2004)

    Article  Google Scholar 

  14. IEEE Taskforce on Process Mining: Process Mining Manifesto. http://www.win.tue.nl/ieeetfpm. Accessed 4 Nov 2013

  15. Jareevongpiboon, W., Janecek, P.: Ontological approach to enhance results of business process mining and analysis. Bus. Proc. Manag. J. 19(3), 459–476 (2013)

    Article  Google Scholar 

  16. Kapetanakis, S., Petridis, M., Knight, B., Ma, J., Bacon, L.: A case based reasoning approach for the monitoring of business workflows. In: Bichindaritz, I., Montani, S. (eds.) ICCBR 2010. LNCS (LNAI), vol. 6176, pp. 390–405. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14274-1_29

    Chapter  Google Scholar 

  17. Lanz, A., Weber, B., Reichert, M.: Workflow time patterns for process-aware information systems. In: Bider, I., Halpin, T., Krogstie, J., Nurcan, S., Proper, E., Schmidt, R., Ukor, R. (eds.) BPMDS/EMMSAD -2010. LNBIP, vol. 50, pp. 94–107. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13051-9_9

    Chapter  Google Scholar 

  18. Levenshtein, A.: Binary codes capable of correcting deletions, insertions and reversals. Sov. Phys. Dokl. 10, 707–710 (1966)

    MathSciNet  MATH  Google Scholar 

  19. Montani, S., Leonardi, G.: Retrieval and clustering for business process monitoring: results and improvements. In: Agudo, B.D., Watson, I. (eds.) ICCBR 2012. LNCS (LNAI), vol. 7466, pp. 269–283. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32986-9_21

    Chapter  Google Scholar 

  20. Montani, S., Leonardi, G.: Retrieval and clustering for supporting business process adjustment and analysis. Inf. Syst. 40, 128–141 (2014)

    Article  Google Scholar 

  21. Montani, S., Leonardi, G., Striani, M., Quaglini, S., Cavallini, A.: Multi-level abstraction for trace comparison and process discovery. Expert Syst. Appl. 81, 398–409 (2017). doi:10.1016/j.eswa.2017.03.063

    Article  Google Scholar 

  22. Palmer, M., Wu, Z.: Verb semantics for English-Chinese translation. Mach. Transl. 10, 59–92 (1995)

    Article  Google Scholar 

  23. Pedrinaci, C., Domingue, J.: Towards an ontology for process monitoring and mining. In: Hepp, M., Hinkelmann, K., Karagiannis, D., Klein, R., Stojanovic, N. (eds.) Proceedings of the Workshop on Semantic Business Process and Product Lifecycle Management SBPM 2007, held in Conjunction with the 3rd European Semantic Web Conference (ESWC 2007), Innsbruck, Austria, June 7, 2007, vol. 251 of CEUR Workshop Proceedings (2007)

    Google Scholar 

  24. Pedrinaci, C., Domingue, J., Brelage, C., van Lessen, T., Karastoyanova, D., Leymann, F.: Semantic business process management: Scaling up the management of business processes. In: Proceedings of the 2th IEEE International Conference on Semantic Computing (ICSC 2008), August 4–7, 2008, Santa Clara, California, USA, pp. 546–553. IEEE Computer Society (2008)

    Google Scholar 

  25. Reichert, M., Dadam, P.: Adeptflex-supporting dynamic changes of workflows without losing control. J. Intell. Inf. Syst. 10, 93–129 (1998)

    Article  Google Scholar 

  26. Sharan, R., Shamir, R.: CLICK: A clustering algorithm for gene expression analysis. In: Proceedings of the International Conference on Intelligent Systems for Molecular Biology, pp. 260–268 (2000)

    Google Scholar 

  27. Sokal, R., Michener, C.: A statistical method for evaluating systematic relationships. Univ. Kansas Sci. Bull. 38, 1409–1438 (1958)

    Google Scholar 

  28. Aalst, W.M.P., Beer, H.T., Dongen, B.F.: Process mining and verification of properties: An approach based on temporal logic. In: Meersman, R., Tari, Z. (eds.) OTM 2005. LNCS, vol. 3760, pp. 130–147. Springer, Heidelberg (2005). doi:10.1007/11575771_11

    Chapter  Google Scholar 

  29. Weber, B., Wild, W.: Towards the agile management of business processes. In: Althoff, K.-D., Dengel, A., Bergmann, R., Nick, M., Roth-Berghofer, T. (eds.) WM 2005. LNCS (LNAI), vol. 3782, pp. 409–419. Springer, Heidelberg (2005). doi:10.1007/11590019_48

    Chapter  Google Scholar 

  30. Yip, A.M., Chan, T.F., Mathew, T.P.: A Scale Dependent Model for Clustering by Optimization of Homogeneity and Separation, CAM Technical Report 03–37. Department of Mathematics, University of California, Los Angeles (2003)

    Google Scholar 

  31. Yujian, L., Bo, L.: A normalized levenshtein distance metric. IEEE Trans. Pattern Anal. Mach. Intell. 29, 1085–1091 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefania Montani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Montani, S., Striani, M., Quaglini, S., Cavallini, A., Leonardi, G. (2017). Semantic Trace Comparison at Multiple Levels of Abstraction. In: Aha, D., Lieber, J. (eds) Case-Based Reasoning Research and Development. ICCBR 2017. Lecture Notes in Computer Science(), vol 10339. Springer, Cham. https://doi.org/10.1007/978-3-319-61030-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61030-6_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61029-0

  • Online ISBN: 978-3-319-61030-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics