Scaling Up Ensemble of Adaptations for Classification by Approximate Nearest Neighbor Retrieval | SpringerLink
Skip to main content

Scaling Up Ensemble of Adaptations for Classification by Approximate Nearest Neighbor Retrieval

  • Conference paper
  • First Online:
Case-Based Reasoning Research and Development (ICCBR 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10339))

Included in the following conference series:

  • 1900 Accesses

Abstract

Acquisition of case adaptation knowledge is a classic challenge for case-based reasoning. A promising response is learning adaptation rules from cases in the case base, using the case difference heuristic (CDH). In previous research we presented Ensembles of Adaptations for Regression (EAR), an approach that uses a CDH-based method to generate adaptation rules and then exploits the availability of multiple learned rules to apply ensemble-based adaptation. We extended EAR to classification tasks, with Ensembles of Adaptations for Classification (EAC), which showed promising accuracy results. EAR and EAC are practical for standard case bases, but become computationally expensive for large case bases and large ensembles, primarily due to retrieval cost. This paper presents research on scaling up EAC by integrating it with EACH, a new method for efficient approximate retrieval that extends locality-sensitive hashing retrieval to categorical features. Experimental results support the ability of the EAC with EACH (Ensemble of Adaptations for Classifications Hashing) to maintain accuracy while increasing efficiency. In addition, EACH could be applied as a standalone method to provide scalable approximate nearest neighbor retrieval in other CBR retrieval contexts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/karlhigley/spark-neighbors.

References

  1. Badra, F., Cordier, A., Lieber, J.: Opportunistic adaptation knowledge discovery. In: McGinty, L., Wilson, D.C. (eds.) ICCBR 2009. LNCS (LNAI), vol. 5650, pp. 60–74. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02998-1_6

    Chapter  Google Scholar 

  2. Bogaerts, S., Leake, D.: Facilitating CBR for incompletely-described cases: distance metrics for partial problem descriptions. In: Funk, P., González Calero, P.A. (eds.) ECCBR 2004. LNCS, vol. 3155, pp. 62–76. Springer, Heidelberg (2004). doi:10.1007/978-3-540-28631-8_6

    Chapter  Google Scholar 

  3. Broder, A.: On the resemblance and containment of documents. In: Proceedings of the Compression and Complexity of Sequences 1997, SEQUENCES 1997, pp. 21–29. IEEE Computer Society, Washington, DC (1997)

    Google Scholar 

  4. Broder, A.Z., Charikar, M., Frieze, A.M., Mitzenmacher, M.: Min-wise independent permutations. In: Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing, pp. 327–336. ACM (1998)

    Google Scholar 

  5. Charikar, M.S.: Similarity estimation techniques from rounding algorithms. In: Proceedings of the Thiry-fourth Annual ACM Symposium on Theory of Computing, STOC 2002, NY, USA, pp. 380–388. ACM, New York (2002)

    Google Scholar 

  6. Daengdej, J., Lukose, D., Tsui, E., Beinat, P., Prophet, L.: Dynamically creating indices for two million cases: a real world problem. In: Smith, I., Faltings, B. (eds.) EWCBR 1996. LNCS, vol. 1168, pp. 105–119. Springer, Heidelberg (1996). doi:10.1007/BFb0020605

    Chapter  Google Scholar 

  7. Datar, M., Immorlica, N., Indyk, P., Mirrokni, V.S.: Locality-sensitive hashing scheme based on p-stable distributions. In: Proceedings of the Twentieth Annual Symposium on Computational Geometry, SCG 2004, NY, USA, pp. 253–262. ACM, New York (2004)

    Google Scholar 

  8. Gilks, W.R., Richardson, S., Spiegelhalter, D.J.: Introducing markov chain monte carlo. Markov Chain Monte Carlo Pract. 1, 19 (1996)

    MATH  Google Scholar 

  9. Hanney, K., Keane, M.T.: Learning adaptation rules from a case-base. In: Smith, I., Faltings, B. (eds.) EWCBR 1996. LNCS, vol. 1168, pp. 179–192. Springer, Heidelberg (1996). doi:10.1007/BFb0020610

    Chapter  Google Scholar 

  10. Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the curse of dimensionality. In: Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing, STOC 1998, NY, USA, pp. 604–613. ACM, New York (1998)

    Google Scholar 

  11. Jalali, V., Leake, D.: CBR meets big data: a case study of large-scale adaptation rule generation. In: Hüllermeier, E., Minor, M. (eds.) ICCBR 2015. LNCS (LNAI), vol. 9343, pp. 181–196. Springer, Cham (2015). doi:10.1007/978-3-319-24586-7_13

    Chapter  Google Scholar 

  12. Jalali, V., Leake, D., Forouzandehmehr, N.: Ensemble of adaptations for classification: learning adaptation rules for categorical features. In: Goel, A., Díaz-Agudo, M.B., Roth-Berghofer, T. (eds.) ICCBR 2016. LNCS (LNAI), vol. 9969, pp. 186–202. Springer, Cham (2016). doi:10.1007/978-3-319-47096-2_13

    Chapter  Google Scholar 

  13. Jalali, V., Leake, D.: Extending case adaptation with automatically-generated ensembles of adaptation rules. In: Delany, S.J., Ontañón, S. (eds.) ICCBR 2013. LNCS (LNAI), vol. 7969, pp. 188–202. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39056-2_14

    Chapter  Google Scholar 

  14. Lee, K.M.: Locality-sensitive hashing for data with categorical and numerical attributes using dual hashing. Int. J. Fuzzy Log. Intell. Syst. 2(2), 98–104 (2014)

    Article  Google Scholar 

  15. Lichman, M.: UCI machine learning repository (2013). http://archive.ics.uci.edu/ml

  16. McDonnell, N., Cunningham, P.: A knowledge-light approach to regression using case-based reasoning. In: Roth-Berghofer, T.R., Göker, M.H., Güvenir, H.A. (eds.) ECCBR 2006. LNCS (LNAI), vol. 4106, pp. 91–105. Springer, Heidelberg (2006). doi:10.1007/11805816_9

    Chapter  Google Scholar 

  17. McSherry, D.: An adaptation heuristic for case-based estimation. In: Smyth, B., Cunningham, P. (eds.) EWCBR 1998. LNCS, vol. 1488, pp. 184–195. Springer, Heidelberg (1998). doi:10.1007/BFb0056332

    Chapter  Google Scholar 

  18. Meng, X., Bradley, J.K., Yavuz, B., Sparks, E.R., Venkataraman, S., Liu, D., Freeman, J., Tsai, D.B., Amde, M., Owen, S., Xin, D., Xin, R., Franklin, M.J., Zadeh, R., Zaharia, M., Talwalkar, A.: MLlib: machine learning in apache spark. CoRR abs/1505.06807 (2015). http://arxiv.org/abs/1505.06807

  19. Müller, G., Bergmann, R.: Learning and applying adaptation operators in process-oriented case-based reasoning. In: Hüllermeier, E., Minor, M. (eds.) ICCBR 2015. LNCS (LNAI), vol. 9343, pp. 259–274. Springer, Cham (2015). doi:10.1007/978-3-319-24586-7_18

    Chapter  Google Scholar 

  20. Smyth, B., Cunningham, P.: The utility problem analysed. In: Smith, I., Faltings, B. (eds.) EWCBR 1996. LNCS, vol. 1168, pp. 392–399. Springer, Heidelberg (1996). doi:10.1007/BFb0020625

    Chapter  Google Scholar 

  21. Smyth, B., Keane, M.: Remembering to forget: a competence-preserving case deletion policy for case-based reasoning systems. In: Proceedings of the Thirteenth International Joint Conference on Artificial Intelligence, pp. 377–382. Morgan Kaufmann, San Mateo (1995)

    Google Scholar 

  22. Smyth, B., McKenna, E.: Building compact competent case-bases. In: Althoff, K.-D., Bergmann, R., Branting, L.K. (eds.) ICCBR 1999. LNCS, vol. 1650, pp. 329–342. Springer, Heidelberg (1999). doi:10.1007/3-540-48508-2_24

    Chapter  Google Scholar 

  23. Stanfill, C., Waltz, D.L.: Toward memory-based reasoning. Commun. ACM 29(12), 1213–1228 (1986)

    Article  Google Scholar 

  24. Wilson, D.R., Martinez, T.R.: Improved heterogeneous distance functions. J. Artif. Int. Res. 6(1), 1–34 (1997)

    MathSciNet  MATH  Google Scholar 

  25. Wilson, D., Martinez, T.: Reduction techniques for instance-based learning algorithms. Mach. Learn. 38(3), 257–286 (2000)

    Article  MATH  Google Scholar 

  26. Wiratunga, N., Craw, S., Rowe, R.: Learning adaptation knowledge to improve case-based reasoning. Artif. Intell. 170, 1175–1192 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhu, J., Yang, Q.: Remembering to add: competence-preserving case-addition policies for case base maintenance. In: Proceedings of the Fifteenth International Joint Conference on Artificial Intelligence, pp. 234–241. Morgan Kaufmann (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vahid Jalali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Jalali, V., Leake, D. (2017). Scaling Up Ensemble of Adaptations for Classification by Approximate Nearest Neighbor Retrieval. In: Aha, D., Lieber, J. (eds) Case-Based Reasoning Research and Development. ICCBR 2017. Lecture Notes in Computer Science(), vol 10339. Springer, Cham. https://doi.org/10.1007/978-3-319-61030-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61030-6_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61029-0

  • Online ISBN: 978-3-319-61030-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics