Abstract
Along with the recent improvement in medical image analysis, exploring deep learning based approaches in the context of mammography image processing has become more realistic. In this paper, we concatenate on both conventional machine learning and deep learning approaches to classify mass abnormalities in mammographic images. Using a deep convolutional neural network (CNN) architecture, the effect of performing various augmentation approaches on the raw pre-detected masses fed to the network is investigated. We propose an extended augmentation method, specific filter bank responses and also a texton-based approach to generate characteristic filtered features for various types of mass textures and eventually use the resulting image data as input for training the CNN. Evaluating our proposed techniques on the DDSM dataset, we show that mammographic mass classification can be tackled effectively by employing an extended augmentation scheme. We obtained 87% accuracy which is comparable to the currently reported results for this task.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
Breasr Cancer Biopsy (2015). http://www.breastcancer.org/symptoms/testing/types/biopsy
National Health Service-Breast screening: professional guidance, 31 August 2016. https://www.gov.uk/government/collections/breast-screening-professional-guidance
Arevalo, J., González, F.A., Ramos-Pollán, R., Oliveira, J.L., Lopez, M.A.G.: Representation learning for mammography mass lesion classification with convolutional neural networks. Comput. Methods Programs Biomed. 127, 248–257 (2016)
Buciu, I., Gacsadi, A.: Directional features for automatic tumor classification of mammogram images. Biomed. Sig. Process. Control 6(4), 370–378 (2011)
Carneiro, G., Nascimento, J., Bradley, A.P.: Unregistered multiview mammogram analysis with pre-trained deep learning models. In: Navab, N., Hornegger, J., Wells, W., Frangi, A. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 652–660. Springer, Cham (2015). doi:10.1007/978-3-319-24574-4_78
Cheng, S.C., Huang, Y.M.: A novel approach to diagnose diabetes based on the fractal characteristics of retinal images. IEEE Trans. Inf. Technol. Biomed. 7(3), 163–170 (2003)
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition, 2009, CVPR 2009, pp. 248–255 (2009)
Dhungel, N., Carneiro, G., Bradley, A.P.: Automated mass detection in mammograms using cascaded deep learning and random forests. In: IEEE International Conference on Digital Image Computing: Techniques and Applications (DICTA), pp. 1–8 (2015)
Fonseca, P., Mendoza, J., Wainer, J., Ferrer, J., Pinto, J., Guerrero, J., Castaneda, B.: Automatic breast density classification using a convolutional neural network architecture search procedure. In: SPIE Medical Imaging, vol. 9414 (2015)
Greenspan, H., van Ginneken, B., Summers, R.M.: Guest editorial deep learning in medical imaging: overview and future promise of an exciting new technique. IEEE Trans. Med. Imaging 35(5), 1153–1159 (2016)
Heath, M., Bowyer, K., Kopans, D., Moore, R., Kegelmeyer, W.P.: The digital database for screening mammography. In. In Proceedings of the 5th International Workshop on Digital Mammography, pp. 212–218. Medical Physics Publishing (2001)
Huynh, B.Q., Li, H., Giger, M.L.: Digital mammographic tumor classification using transfer learning from deep convolutional neural networks. J. Med. Imaging 3(3), 034501 (2016)
Jamieson, A.R., Drukker, K., Giger, M.L.: Breast image feature learning with adaptive deconvolutional networks. In: SPIE Medical Imaging, vol. 8315 (2012)
Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T.: Caffe: convolutional architecture for fast feature embedding. arXiv preprint arXiv:1408.5093 (2014)
Jiao, Z., Gao, X., Wang, Y., Li, J.: A deep feature based framework for breast masses classification. Neurocomputing 197, 221–231 (2016)
Kallenberg, M., Petersen, K., Nielsen, M., Ng, A.Y., Diao, P., Igel, C., Vachon, C.M., Holland, K., Winkel, R.R., Karssemeijer, N.: Unsupervised deep learning applied to breast density segmentation and mammographic risk scoring. IEEE Trans. Med. Imaging 35(5), 1322–1331 (2016)
Kooi, T., et al.: A comparison between a deep convolutional neural network and radiologists for classifying regions of interest in mammography. In: Tingberg, A., Lång, K., Timberg, P. (eds.) IWDM 2016. LNCS, vol. 9699, pp. 51–56. Springer, Cham (2016). doi:10.1007/978-3-319-41546-8_7
Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)
Lévy, D., Jain, A.: Breast mass classification from mammograms using deep convolutional neural networks. 30th Conference on Neural Information Processing Systems (NIPS), Barcelona, Spain, arXiv preprint arXiv:1612.00542 (2016)
Oliver, A., Freixenet, J., Marti, J., Pérez, E., Pont, J., Denton, E.R., Zwiggelaar, R.: A review of automatic mass detection and segmentation in mammographic images. Med. Image Anal. 14(2), 87–110 (2010)
Petersen, K., Chernoff, K., Nielsen, M., Ng, A.Y.: Breast density scoring with multiscale denoising autoencoders. In: STMI workshop at MICCAI, vol. 2012 (2012)
Pinto, N., Doukhan, D., DiCarlo, J.J., Cox, D.D.: A high-throughput screening approach to discovering good forms of biologically inspired visual representation. PLoS Comput. Biol. 5(11), e1000579 (2009)
Ranzato, M., Poultney, C., Chopra, S., Cun, Y.L.: Efficient learning of sparse representations with an energy-based model. In: Advances in Neural Information Processing Systems, pp. 1137–1144 (2006)
Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., BergLi, A.C., Fei-Fei, L.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)
Serifovic-Trbalic, A., Trbalic, A., Demirovic, D., Prljaca, N., Cattin, P.: Classification of benign and malignant masses in breast mammograms. In: 37th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pp. 228–233. IEEE (2014)
Stewart, B., Wild, C.P.: International Agency for Research on Cancer, W: World Cancer Report (2014)
Tajbakhsh, N., Shin, J.Y., Gurudu, S.R., Hurst, R.T., Kendall, C.B., Gotway, M.B., Liang, J.: Convolutional neural networks for medical image analysis: full training or fine tuning? IEEE Trans. Med. Imaging 35(5), 1299–1312 (2016)
Vaidehi, K., Subashini, T.: Automatic characterization of benign and malignant masses in mammography. Procedia Comput. Sci. 46, 1762–1769 (2015)
Varma, M., Zisserman, A.: Texture classification: are filter banks necessary? In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, pp. II-691. IEEE (2003)
Varma, M., Zisserman, A.: A statistical approach to texture classification from single images. Int. J. Comput. Vis. 62(1–2), 61–81 (2005)
Acknowledgments
The authors would like to gratefully acknowledge Sandy Spence and Alun Jones for their support and maintenance of the GPU and the systems used for this research.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Hamidinekoo, A., Suhail, Z., Qaiser, T., Zwiggelaar, R. (2017). Investigating the Effect of Various Augmentations on the Input Data Fed to a Convolutional Neural Network for the Task of Mammographic Mass Classification. In: Valdés Hernández, M., González-Castro, V. (eds) Medical Image Understanding and Analysis. MIUA 2017. Communications in Computer and Information Science, vol 723. Springer, Cham. https://doi.org/10.1007/978-3-319-60964-5_35
Download citation
DOI: https://doi.org/10.1007/978-3-319-60964-5_35
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-60963-8
Online ISBN: 978-3-319-60964-5
eBook Packages: Computer ScienceComputer Science (R0)