Investigating the Effect of Various Augmentations on the Input Data Fed to a Convolutional Neural Network for the Task of Mammographic Mass Classification | SpringerLink
Skip to main content

Investigating the Effect of Various Augmentations on the Input Data Fed to a Convolutional Neural Network for the Task of Mammographic Mass Classification

  • Conference paper
  • First Online:
Medical Image Understanding and Analysis (MIUA 2017)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 723))

Included in the following conference series:

Abstract

Along with the recent improvement in medical image analysis, exploring deep learning based approaches in the context of mammography image processing has become more realistic. In this paper, we concatenate on both conventional machine learning and deep learning approaches to classify mass abnormalities in mammographic images. Using a deep convolutional neural network (CNN) architecture, the effect of performing various augmentation approaches on the raw pre-detected masses fed to the network is investigated. We propose an extended augmentation method, specific filter bank responses and also a texton-based approach to generate characteristic filtered features for various types of mass textures and eventually use the resulting image data as input for training the CNN. Evaluating our proposed techniques on the DDSM dataset, we show that mammographic mass classification can be tackled effectively by employing an extended augmentation scheme. We obtained 87% accuracy which is comparable to the currently reported results for this task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 14871
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 18589
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://developer.nvidia.com/digits.

References

  1. Breasr Cancer Biopsy (2015). http://www.breastcancer.org/symptoms/testing/types/biopsy

  2. National Health Service-Breast screening: professional guidance, 31 August 2016. https://www.gov.uk/government/collections/breast-screening-professional-guidance

  3. Arevalo, J., González, F.A., Ramos-Pollán, R., Oliveira, J.L., Lopez, M.A.G.: Representation learning for mammography mass lesion classification with convolutional neural networks. Comput. Methods Programs Biomed. 127, 248–257 (2016)

    Article  Google Scholar 

  4. Buciu, I., Gacsadi, A.: Directional features for automatic tumor classification of mammogram images. Biomed. Sig. Process. Control 6(4), 370–378 (2011)

    Article  Google Scholar 

  5. Carneiro, G., Nascimento, J., Bradley, A.P.: Unregistered multiview mammogram analysis with pre-trained deep learning models. In: Navab, N., Hornegger, J., Wells, W., Frangi, A. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 652–660. Springer, Cham (2015). doi:10.1007/978-3-319-24574-4_78

    Google Scholar 

  6. Cheng, S.C., Huang, Y.M.: A novel approach to diagnose diabetes based on the fractal characteristics of retinal images. IEEE Trans. Inf. Technol. Biomed. 7(3), 163–170 (2003)

    Article  Google Scholar 

  7. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition, 2009, CVPR 2009, pp. 248–255 (2009)

    Google Scholar 

  8. Dhungel, N., Carneiro, G., Bradley, A.P.: Automated mass detection in mammograms using cascaded deep learning and random forests. In: IEEE International Conference on Digital Image Computing: Techniques and Applications (DICTA), pp. 1–8 (2015)

    Google Scholar 

  9. Fonseca, P., Mendoza, J., Wainer, J., Ferrer, J., Pinto, J., Guerrero, J., Castaneda, B.: Automatic breast density classification using a convolutional neural network architecture search procedure. In: SPIE Medical Imaging, vol. 9414 (2015)

    Google Scholar 

  10. Greenspan, H., van Ginneken, B., Summers, R.M.: Guest editorial deep learning in medical imaging: overview and future promise of an exciting new technique. IEEE Trans. Med. Imaging 35(5), 1153–1159 (2016)

    Article  Google Scholar 

  11. Heath, M., Bowyer, K., Kopans, D., Moore, R., Kegelmeyer, W.P.: The digital database for screening mammography. In. In Proceedings of the 5th International Workshop on Digital Mammography, pp. 212–218. Medical Physics Publishing (2001)

    Google Scholar 

  12. Huynh, B.Q., Li, H., Giger, M.L.: Digital mammographic tumor classification using transfer learning from deep convolutional neural networks. J. Med. Imaging 3(3), 034501 (2016)

    Article  Google Scholar 

  13. Jamieson, A.R., Drukker, K., Giger, M.L.: Breast image feature learning with adaptive deconvolutional networks. In: SPIE Medical Imaging, vol. 8315 (2012)

    Google Scholar 

  14. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T.: Caffe: convolutional architecture for fast feature embedding. arXiv preprint arXiv:1408.5093 (2014)

  15. Jiao, Z., Gao, X., Wang, Y., Li, J.: A deep feature based framework for breast masses classification. Neurocomputing 197, 221–231 (2016)

    Article  Google Scholar 

  16. Kallenberg, M., Petersen, K., Nielsen, M., Ng, A.Y., Diao, P., Igel, C., Vachon, C.M., Holland, K., Winkel, R.R., Karssemeijer, N.: Unsupervised deep learning applied to breast density segmentation and mammographic risk scoring. IEEE Trans. Med. Imaging 35(5), 1322–1331 (2016)

    Article  Google Scholar 

  17. Kooi, T., et al.: A comparison between a deep convolutional neural network and radiologists for classifying regions of interest in mammography. In: Tingberg, A., Lång, K., Timberg, P. (eds.) IWDM 2016. LNCS, vol. 9699, pp. 51–56. Springer, Cham (2016). doi:10.1007/978-3-319-41546-8_7

    Google Scholar 

  18. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  19. Lévy, D., Jain, A.: Breast mass classification from mammograms using deep convolutional neural networks. 30th Conference on Neural Information Processing Systems (NIPS), Barcelona, Spain, arXiv preprint arXiv:1612.00542 (2016)

  20. Oliver, A., Freixenet, J., Marti, J., Pérez, E., Pont, J., Denton, E.R., Zwiggelaar, R.: A review of automatic mass detection and segmentation in mammographic images. Med. Image Anal. 14(2), 87–110 (2010)

    Article  Google Scholar 

  21. Petersen, K., Chernoff, K., Nielsen, M., Ng, A.Y.: Breast density scoring with multiscale denoising autoencoders. In: STMI workshop at MICCAI, vol. 2012 (2012)

    Google Scholar 

  22. Pinto, N., Doukhan, D., DiCarlo, J.J., Cox, D.D.: A high-throughput screening approach to discovering good forms of biologically inspired visual representation. PLoS Comput. Biol. 5(11), e1000579 (2009)

    Article  MathSciNet  Google Scholar 

  23. Ranzato, M., Poultney, C., Chopra, S., Cun, Y.L.: Efficient learning of sparse representations with an energy-based model. In: Advances in Neural Information Processing Systems, pp. 1137–1144 (2006)

    Google Scholar 

  24. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., BergLi, A.C., Fei-Fei, L.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  25. Serifovic-Trbalic, A., Trbalic, A., Demirovic, D., Prljaca, N., Cattin, P.: Classification of benign and malignant masses in breast mammograms. In: 37th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pp. 228–233. IEEE (2014)

    Google Scholar 

  26. Stewart, B., Wild, C.P.: International Agency for Research on Cancer, W: World Cancer Report (2014)

    Google Scholar 

  27. Tajbakhsh, N., Shin, J.Y., Gurudu, S.R., Hurst, R.T., Kendall, C.B., Gotway, M.B., Liang, J.: Convolutional neural networks for medical image analysis: full training or fine tuning? IEEE Trans. Med. Imaging 35(5), 1299–1312 (2016)

    Article  Google Scholar 

  28. Vaidehi, K., Subashini, T.: Automatic characterization of benign and malignant masses in mammography. Procedia Comput. Sci. 46, 1762–1769 (2015)

    Article  Google Scholar 

  29. Varma, M., Zisserman, A.: Texture classification: are filter banks necessary? In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, pp. II-691. IEEE (2003)

    Google Scholar 

  30. Varma, M., Zisserman, A.: A statistical approach to texture classification from single images. Int. J. Comput. Vis. 62(1–2), 61–81 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to gratefully acknowledge Sandy Spence and Alun Jones for their support and maintenance of the GPU and the systems used for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reyer Zwiggelaar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Hamidinekoo, A., Suhail, Z., Qaiser, T., Zwiggelaar, R. (2017). Investigating the Effect of Various Augmentations on the Input Data Fed to a Convolutional Neural Network for the Task of Mammographic Mass Classification. In: Valdés Hernández, M., González-Castro, V. (eds) Medical Image Understanding and Analysis. MIUA 2017. Communications in Computer and Information Science, vol 723. Springer, Cham. https://doi.org/10.1007/978-3-319-60964-5_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60964-5_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60963-8

  • Online ISBN: 978-3-319-60964-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics