Classification of Cervical-Cancer Using Pap-Smear Images: A Convolutional Neural Network Approach | SpringerLink
Skip to main content

Classification of Cervical-Cancer Using Pap-Smear Images: A Convolutional Neural Network Approach

  • Conference paper
  • First Online:
Medical Image Understanding and Analysis (MIUA 2017)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 723))

Included in the following conference series:

Abstract

Cervical cancer is the second most common and the fifth deadliest cancer in women. In this paper, we propose a deep learning approach for detecting cervix cancer from pap-smear images. Rather than designing and training a convolutional neural network (CNN) from the scratch, we show that we can employ a pre-trained CNN architecture as a feature extractor and use the output features as input to train a Support Vector Machine Classifier. We demonstrate the efficacy of such a new employment on the Herlev public database for single cell pap-smear, whereby the experimental results show that our proposed system neatly outperforms other state of the art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 14871
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 18589
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  2. Ferlay, J., et al.: Cancer incidence and mortality worldwide. In: GLOBOCAN 2012, vol. v1.0 (2010)

    Google Scholar 

  3. Srivastava, N., et al.: Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    Google Scholar 

  4. Arbyn, M., Anttila, A., Jordan, J., Ronco, G., Schenck, U., Segnan, N., Wiener, H., Herbert, A., von Karsa, L.: European guidelines for quality assurance in cervical cancer screening. Ann. Oncol. 21(3), 448 (2010). Second edition summary document

    Google Scholar 

  5. Bora, K., Chowdhury, M., Mahanta, L.B., Kundu, M.K., Das, A.K.: Automated classification of Pap smear images to detect cervical dysplasia. Comput. Methods Programs Biomed. 138, 31–47 (2017)

    Article  Google Scholar 

  6. Bora, K., Chowdhury, M., Mahanta, L.B., Kundu, M.K., Das, A.K.: Pap smear image classification using convolutional neural network. In: Proceedings of the Tenth Indian Conference on Computer Vision, Graphics and Image Processing, ICVGIP 2016, NY, USA, pp. 55:1–55:8. ACM, New York (2016)

    Google Scholar 

  7. Cawley, G.C., Talbot, N.L.C.: On over-fitting in model selection and subsequent selection bias in performance evaluation. J. Mach. Learn. Res. 113(2), 2079–2107 (2014)

    Google Scholar 

  8. Chankong, T., Theera-Umpon, N., Auephanwiriyakul, S.: Automatic cervical cell segmentation and classification in Pap smears. Comput. Methods Programs Biomed. 113(2), 539–556 (2010)

    Article  Google Scholar 

  9. Chen, Y.F., Huang, P.C., Lin, K.C., Lin, H.H., Wang, L.E., Cheng, C.C., Chen, T.P., Chan, Y.K., Chiang, J.Y.: Semi-automatic segmentation and classification of Pap smear cells. IEEE J. Biomed. Health Inform. 18(1), 94–108 (2014)

    Article  Google Scholar 

  10. Gençtav, A., Aksoy, S., Önder, S.: Unsupervised segmentation and classification of cervical cell images. Pattern Recogn. 45(12), 4151–4168 (2012)

    Google Scholar 

  11. Gigerenzer, G., Wegwarth, O.: Five year survival rates can mislead. BMJ 346, f548 (2013)

    Article  Google Scholar 

  12. Henschke, C.L., et al.: International early lung cancer action program investigators: survival of patients with stage 1 lung cancer detected on CT screening. N. Engl. J. Med. 335, 1763–1771 (2006)

    Google Scholar 

  13. Costa, J.A.F., Mascarenhas, N.D., de Andrade Netto, M.L.: Cell nuclei segmentation in noisy images using morphological watersheds. In: International Society for Optical Engineering, vol. 3164, pp. 314–324 (1997)

    Google Scholar 

  14. Jantzen, J., Norup, J., Dounias, G., Bjerregaard, B.: Pap-smear benchmark data for pattern classification. In: Proceedings of NiSIS 2005: Nature Inspired Smart Information Systems, EU Co-ordination, pp. 1–9 (2005)

    Google Scholar 

  15. Krizhevsky, A., Sutskever, I., Hinton, E.: Imagenet classification with deep convolutional neural networks (2012)

    Google Scholar 

  16. Krizhevsky, A., Sutskever, I., Hinton, G.: Imagenet classification with deep convolutional neural networks. In: Bartlett, P., Pereira, F., Burges, C., Bottou, L., Weinberger, K. (eds.) Advances in Neural Information Processing Systems, vol. 25, pp. 1106–1114 (2012)

    Google Scholar 

  17. Berrada, L., Zisserman, A., Kumar, M.P.: Trusting SVM for piecewise linear CNNs. In: Proceedings of International Conference on Learning Representations (2017, to appear)

    Google Scholar 

  18. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015)

    Google Scholar 

  19. Lezoray, O., Cardot, H.: Cooperation of color pixel classification schemes and color watershed: a study for microscopic images. IEEE Trans. Image Process. 11(7), 783–789 (2002)

    Article  Google Scholar 

  20. Mahanta, L.B., Nath, D.C., Nath, C.K.: Cervix cancer diagnosis from Pap smear images using structure based segmentation and shape analysis. J. Emerg. Trends Comput. Inf. Serv. 3(2), 245–249 (2012)

    Google Scholar 

  21. Marinakis, Y., Dounias, G.: Nature-inspired intelligent techniques for Pap smear diagnosis: ant colony optimization for cell classification (2006)

    Google Scholar 

  22. Mbaga, A., ZhiJun, P.: Pap smear images classification for early detection of cervicel cancer. Int. J. Comput. Appl. 118(7), 10–16 (2016)

    Google Scholar 

  23. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Proceedings of European Computer Vision Conference, pp. 818–833 (2014)

    Google Scholar 

  24. World Health Organization: Fact Sheet No. 297: Cancer, February 2006

    Google Scholar 

  25. Vandewalle, P., Kovacevic, J., Vetterli, M.: Reproducible research in signal processing. IEEE Sig. Process. Mag. 26(3), 37–47 (2009)

    Google Scholar 

  26. Pawley, J.B.: Handbook of Biological Confocal Microscopy. Springer, Heidelberg (2006)

    Google Scholar 

  27. Plissiti, M.E., Charchanti, A., Krikoni, O., Fotiadis, D.I.: Automated segmentation of cell nuclei in PAP smear images, October 2006

    Google Scholar 

  28. Plissiti, M.E., Nikou, C., Charchanti, A.: Automated detection of cell nuclei in Pap smear images using morphological reconstruction and clustering. IEEE Trans. Inf. Technol. Biomed. 15(2), 233–241 (2011)

    Article  Google Scholar 

  29. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR abs/1409.1556 (2014)

    Google Scholar 

  30. Zeiler, M.D., Fergus, R.: Stochastic pooling for regularization of deep convolutional neural networks. CoRR abs/1301.3557 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bilal Taha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Taha, B., Dias, J., Werghi, N. (2017). Classification of Cervical-Cancer Using Pap-Smear Images: A Convolutional Neural Network Approach. In: Valdés Hernández, M., González-Castro, V. (eds) Medical Image Understanding and Analysis. MIUA 2017. Communications in Computer and Information Science, vol 723. Springer, Cham. https://doi.org/10.1007/978-3-319-60964-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60964-5_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60963-8

  • Online ISBN: 978-3-319-60964-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics