Abstract
Cervical cancer is the second most common and the fifth deadliest cancer in women. In this paper, we propose a deep learning approach for detecting cervix cancer from pap-smear images. Rather than designing and training a convolutional neural network (CNN) from the scratch, we show that we can employ a pre-trained CNN architecture as a feature extractor and use the output features as input to train a Support Vector Machine Classifier. We demonstrate the efficacy of such a new employment on the Herlev public database for single cell pap-smear, whereby the experimental results show that our proposed system neatly outperforms other state of the art methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)
Ferlay, J., et al.: Cancer incidence and mortality worldwide. In: GLOBOCAN 2012, vol. v1.0 (2010)
Srivastava, N., et al.: Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)
Arbyn, M., Anttila, A., Jordan, J., Ronco, G., Schenck, U., Segnan, N., Wiener, H., Herbert, A., von Karsa, L.: European guidelines for quality assurance in cervical cancer screening. Ann. Oncol. 21(3), 448 (2010). Second edition summary document
Bora, K., Chowdhury, M., Mahanta, L.B., Kundu, M.K., Das, A.K.: Automated classification of Pap smear images to detect cervical dysplasia. Comput. Methods Programs Biomed. 138, 31–47 (2017)
Bora, K., Chowdhury, M., Mahanta, L.B., Kundu, M.K., Das, A.K.: Pap smear image classification using convolutional neural network. In: Proceedings of the Tenth Indian Conference on Computer Vision, Graphics and Image Processing, ICVGIP 2016, NY, USA, pp. 55:1–55:8. ACM, New York (2016)
Cawley, G.C., Talbot, N.L.C.: On over-fitting in model selection and subsequent selection bias in performance evaluation. J. Mach. Learn. Res. 113(2), 2079–2107 (2014)
Chankong, T., Theera-Umpon, N., Auephanwiriyakul, S.: Automatic cervical cell segmentation and classification in Pap smears. Comput. Methods Programs Biomed. 113(2), 539–556 (2010)
Chen, Y.F., Huang, P.C., Lin, K.C., Lin, H.H., Wang, L.E., Cheng, C.C., Chen, T.P., Chan, Y.K., Chiang, J.Y.: Semi-automatic segmentation and classification of Pap smear cells. IEEE J. Biomed. Health Inform. 18(1), 94–108 (2014)
Gençtav, A., Aksoy, S., Önder, S.: Unsupervised segmentation and classification of cervical cell images. Pattern Recogn. 45(12), 4151–4168 (2012)
Gigerenzer, G., Wegwarth, O.: Five year survival rates can mislead. BMJ 346, f548 (2013)
Henschke, C.L., et al.: International early lung cancer action program investigators: survival of patients with stage 1 lung cancer detected on CT screening. N. Engl. J. Med. 335, 1763–1771 (2006)
Costa, J.A.F., Mascarenhas, N.D., de Andrade Netto, M.L.: Cell nuclei segmentation in noisy images using morphological watersheds. In: International Society for Optical Engineering, vol. 3164, pp. 314–324 (1997)
Jantzen, J., Norup, J., Dounias, G., Bjerregaard, B.: Pap-smear benchmark data for pattern classification. In: Proceedings of NiSIS 2005: Nature Inspired Smart Information Systems, EU Co-ordination, pp. 1–9 (2005)
Krizhevsky, A., Sutskever, I., Hinton, E.: Imagenet classification with deep convolutional neural networks (2012)
Krizhevsky, A., Sutskever, I., Hinton, G.: Imagenet classification with deep convolutional neural networks. In: Bartlett, P., Pereira, F., Burges, C., Bottou, L., Weinberger, K. (eds.) Advances in Neural Information Processing Systems, vol. 25, pp. 1106–1114 (2012)
Berrada, L., Zisserman, A., Kumar, M.P.: Trusting SVM for piecewise linear CNNs. In: Proceedings of International Conference on Learning Representations (2017, to appear)
LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015)
Lezoray, O., Cardot, H.: Cooperation of color pixel classification schemes and color watershed: a study for microscopic images. IEEE Trans. Image Process. 11(7), 783–789 (2002)
Mahanta, L.B., Nath, D.C., Nath, C.K.: Cervix cancer diagnosis from Pap smear images using structure based segmentation and shape analysis. J. Emerg. Trends Comput. Inf. Serv. 3(2), 245–249 (2012)
Marinakis, Y., Dounias, G.: Nature-inspired intelligent techniques for Pap smear diagnosis: ant colony optimization for cell classification (2006)
Mbaga, A., ZhiJun, P.: Pap smear images classification for early detection of cervicel cancer. Int. J. Comput. Appl. 118(7), 10–16 (2016)
Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Proceedings of European Computer Vision Conference, pp. 818–833 (2014)
World Health Organization: Fact Sheet No. 297: Cancer, February 2006
Vandewalle, P., Kovacevic, J., Vetterli, M.: Reproducible research in signal processing. IEEE Sig. Process. Mag. 26(3), 37–47 (2009)
Pawley, J.B.: Handbook of Biological Confocal Microscopy. Springer, Heidelberg (2006)
Plissiti, M.E., Charchanti, A., Krikoni, O., Fotiadis, D.I.: Automated segmentation of cell nuclei in PAP smear images, October 2006
Plissiti, M.E., Nikou, C., Charchanti, A.: Automated detection of cell nuclei in Pap smear images using morphological reconstruction and clustering. IEEE Trans. Inf. Technol. Biomed. 15(2), 233–241 (2011)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR abs/1409.1556 (2014)
Zeiler, M.D., Fergus, R.: Stochastic pooling for regularization of deep convolutional neural networks. CoRR abs/1301.3557 (2013)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Taha, B., Dias, J., Werghi, N. (2017). Classification of Cervical-Cancer Using Pap-Smear Images: A Convolutional Neural Network Approach. In: Valdés Hernández, M., González-Castro, V. (eds) Medical Image Understanding and Analysis. MIUA 2017. Communications in Computer and Information Science, vol 723. Springer, Cham. https://doi.org/10.1007/978-3-319-60964-5_23
Download citation
DOI: https://doi.org/10.1007/978-3-319-60964-5_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-60963-8
Online ISBN: 978-3-319-60964-5
eBook Packages: Computer ScienceComputer Science (R0)