Finding the Intersection Points of Networks | SpringerLink
Skip to main content

Finding the Intersection Points of Networks

  • Conference paper
  • First Online:
Innovations for Community Services (I4CS 2017)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 717))

Included in the following conference series:

Abstract

Two algorithms have been constructed that find the intersections between two sets of line segments in practical networks used for planning and routing, solving the implementation issues of existing algorithms. One of the algorithms is a generalisation of the Bentley-Ottmann-algorithm, relaxing the assumptions in the original algorithm, the other is a smart brute force algorithm. In this article the algorithms are elaborated and will be tested, using real data sets constructed from street networks and trench networks. Both algorithms find all the intersections but with a difference in calculation time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Intersection means intersection in the two dimensional projection.

  2. 2.

    Note that the Bentley-Ottmann-algorithm is output-sensitive, meaning that the complexity and therefore the running times depend on the size of the output.

References

  1. Agarwal, P.K., Sharir, M.: Red-blue intersection detection algorithms, with applications to motion planning and collision detection. SIAM J. Comput. 19(2), 297–321 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arge, L., Mølhave, T., Zeh, N.: Cache-oblivious red-blue line segment intersection. In: Halperin, D., Mehlhorn, K. (eds.) ESA 2008. LNCS, vol. 5193, pp. 88–99. Springer, Heidelberg (2008). doi:10.1007/978-3-540-87744-8_8

    Chapter  Google Scholar 

  3. Balaban, I.: An optimal algorithm for finding segments intersections. In: Proceedings of the Eleventh Annual Symposium on Computational Geometry, SCG 1995, pp. 211–219. ACM, New York (1995)

    Google Scholar 

  4. Bentley, J., Ottmann, T.: Algorithms for reporting and counting geometric intersections. IEEE Trans. Comput. 28(9), 643–647 (1979)

    Article  MATH  Google Scholar 

  5. Chazelle, B., Edelsbrunner, H.: An optimal algorithm for intersecting line segments in the plane. J. ACM 39(1), 1–54 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  6. Clarkson, K., Shor, P.: Applications of random sampling in computational geometry, II. Discret. Comput. Geom. 4(5), 387–421 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  7. Mantler, A., Snoeyink, J.: Intersecting red and blue line segments in optimal time and precision. In: Akiyama, J., Kano, M., Urabe, M. (eds.) JCDCG 2000. LNCS, vol. 2098, pp. 244–251. Springer, Heidelberg (2001). doi:10.1007/3-540-47738-1_23

    Chapter  Google Scholar 

  8. Mes, M.R., Iacob, M.E.: Synchromodal transport planning at a logistics service provider. In: Zijm, H., Klumpp, M., Clausen, U., ten Hompel, M. (eds.) Logistics and Supply Chain Innovation, pp. 23–36. Springer, Heidelberg (2016)

    Chapter  Google Scholar 

  9. Moore, B.: Data structures (2014). http://www.mathworks.com/matlabcentral/fileexchange/45123-data-structures

  10. Mulmuley, K.: A fast planar partition algorithm. I. In: 2013 IEEE 54th Annual Symposium on Foundations of Computer Science, pp. 580–589 (1988)

    Google Scholar 

  11. Phillipson, F.: Efficient algorithms for infrastructure networks: planning issues and economic impact. Ph.D. thesis, VU Amsterdam (2014)

    Google Scholar 

  12. Sedgewick, R., Wayne, K.: Algorithms, 4th edn. Addison-Wesley, Boston (2011)

    Google Scholar 

  13. Shamos, M., Hoey, D.: Geometric intersection problems. In: 2013 IEEE 54th Annual Symposium on Foundations of Computer Science, pp. 208–215 (1976)

    Google Scholar 

  14. SteadieSeifi, M., Dellaert, N.P., Nuijten, W., Van Woensel, T., Raoufi, R.: Multimodal freight transportation planning: a literature review. Eur. J. Oper. Res. 233(1), 1–15 (2014)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Phillipson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Neumann, N., Phillipson, F. (2017). Finding the Intersection Points of Networks. In: Eichler, G., Erfurth, C., Fahrnberger, G. (eds) Innovations for Community Services. I4CS 2017. Communications in Computer and Information Science, vol 717. Springer, Cham. https://doi.org/10.1007/978-3-319-60447-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60447-3_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60446-6

  • Online ISBN: 978-3-319-60447-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics