Integrating Simulation and Signal Processing with Stochastic Social Kinetic Model | SpringerLink
Skip to main content

Integrating Simulation and Signal Processing with Stochastic Social Kinetic Model

  • Conference paper
  • First Online:
Social, Cultural, and Behavioral Modeling (SBP-BRiMS 2017)

Abstract

Data that continuously track the dynamics of large populations have spurred a surge in research on computational sustainability. However, coping with massive, noisy, unstructured, and disparate data streams is not easy. In this paper, we describe a particle filter algorithm that integrates signal processing and simulation modeling to study complex social systems using massive, noisy, unstructured data streams. This integration enables researchers to specify and track the dynamics of complex social systems by building a simulation model. To show the effectiveness of this algorithm, we infer city-scale traffic dynamics from the observed trajectories of a small number of probe vehicles uniformly sampled from the system. The experimental results show that our model can not only track and predict human mobility, but also explain how traffic is generated through the movements of individual vehicles. The algorithm and its application point to a new way of bringing together modelers and data miners to turn the real world into a living lab.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Blondel, V.D., Decuyper, A., Krings, G.: A survey of results on mobile phone datasets analysis (2015). arXiv preprint: arXiv:1502.03406

  2. Borshchev, A.: The Big Book of Simulation Modeling: Multimethod Modeling with AnyLogic 6. AnyLogic North America, Chicago (2013)

    Google Scholar 

  3. Boyen, X.: Inference and learning in complex stochastic processes. Ph.D. thesis, Stanford University (2002)

    Google Scholar 

  4. Castellano, C., Fortunato, S., Loreto, V.: Statistical physics of social dynamics. Rev. Mod. Phys. 81(2), 591–646 (2009)

    Article  Google Scholar 

  5. Dong, W., Heller, K., Pentland, A.S.: Modeling infection with multi-agent dynamics. In: Yang, S.J., Greenberg, A.M., Endsley, M. (eds.) SBP 2012. LNCS, vol. 7227, pp. 172–179. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29047-3_21

    Chapter  Google Scholar 

  6. Forrester, J.W.: Industrial Dynamics. MIT Press, Cambridge (1961)

    Google Scholar 

  7. Gillespie, D.T.: Stochastic simulation of chemical kinetics. Annu. Rev. Phys. Chem. 58, 35–55 (2007)

    Article  Google Scholar 

  8. Goldenberg, A., Zheng, A.X., Fienberg, S.E., Airoldi, E.M.: A survey of statistical network models. Found. Trends® Mach. Learn. 2(2), 129–233 (2010)

    Article  MATH  Google Scholar 

  9. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    Google Scholar 

  10. Goss, P.J., Peccoud, J.: Quantitative modeling of stochastic systems in molecular biology by using stochastic petri nets. Proc. Natl. Acad. Sci. 95(12), 6750–6755 (1998)

    Article  Google Scholar 

  11. Grassmann, W.K.: Transient solutions in Markovian queueing systems. Comput. Oper. Res. 4, 47–53 (1977)

    Article  Google Scholar 

  12. Guan, T., Dong, W., Koutsonikolas, D., Qiao, C.: Fine-grained location extraction and prediction with little known data. In: Proceedings of the 2017 IEEE Wireless Communications and Networking Conference. IEEE Communications Society (2017)

    Google Scholar 

  13. Marsan, M.A., Balbo, G., Conte, G., Donatelli, S., Franceschinis, G.: Modelling with Generalized Stochastic Petri Nets. Wiley, New York (1994)

    MATH  Google Scholar 

  14. MATSim Development Team (eds.): MATSIM-T: aims, approach and implementation. Technical report, IVT, ETH Zürich, Zürich (2007)

    Google Scholar 

  15. de Montjoye, Y.A., Smoreda, Z., Trinquart, R., Ziemlicki, C., Blondel, V.D.: D4D-Senegal: the second mobile phone data for development challenge (2014). arXiv preprint: arXiv:1407.4885

  16. Murphy, K.P.: Dynamic Bayesian networks: representation, inference and learning. Ph.D. thesis, University of California, Berkeley (2002)

    Google Scholar 

  17. Smith, G.L., Schmidt, S.F., McGee, L.A.: Application of statistical filter theory to the optimal estimation of position and velocity on board a circumlunar vehicle. National Aeronautics and Space Administration (1962)

    Google Scholar 

  18. Toussaint, M., Storkey, A.: Probabilistic inference for solving discrete and continuous state Markov decision processes. In: Proceedings of the 23rd International Conference on Machine Learning, pp. 945–952. ACM (2006)

    Google Scholar 

  19. Wilkinson, D.J.: Stochastic Modelling for Systems Biology. CRC Press, Boca Raton (2011)

    MATH  Google Scholar 

  20. Xu, Z., Dong, W., Srihari, S.N.: Using social dynamics to make individual predictions: variational inference with stochastic kinetic model. In: Advances in Neural Information Processing Systems, pp. 2775–2783 (2016)

    Google Scholar 

  21. Ziemke, D., Nagel, K., Bhat, C.: Integrating CEMDAP and MATSim to increase the transferability of transport demand models. Transp. Res. Rec. J. Transp. Res. Board 2493, 117–125 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Dong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Yang, F., Dong, W. (2017). Integrating Simulation and Signal Processing with Stochastic Social Kinetic Model. In: Lee, D., Lin, YR., Osgood, N., Thomson, R. (eds) Social, Cultural, and Behavioral Modeling. SBP-BRiMS 2017. Lecture Notes in Computer Science(), vol 10354. Springer, Cham. https://doi.org/10.1007/978-3-319-60240-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60240-0_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60239-4

  • Online ISBN: 978-3-319-60240-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics