Abstract
Prostate cancer is the most diagnosed form of cancer in men, but prognosis is relatively good with a sufficiently early diagnosis. Radiomics has been shown to be a powerful prognostic tool for cancer detection; however, these radiomics-driven methods currently rely on hand-crafted sets of quantitative imaging-based features, which can limit their ability to fully characterize unique prostate cancer tumour traits. We present a novel discovery radiomics framework via a mixture of deep convolutional neural network (ConvNet) sequencers for generating custom radiomic sequences tailored for prostate cancer detection. We evaluate the performance of the mixture of ConvNet sequencers against state-of-the-art hand-crafted radiomic sequencers for binary computer-aided prostate cancer classification using real clinical prostate multi-parametric MRI data. Results for the mixture of ConvNet sequencers demonstrate good performance in prostate cancer classification relative to the hand-crafted radiomic sequencers, and show potential for more efficient and reliable automatic prostate cancer classification.
Similar content being viewed by others
Notes
- 1.
A total of 11,424 (i.e., \(714 \times 8 \times 2\)) augmented healthy samples were generated, of which 1280 candidates were drawn at random to balance the training set.
References
Aerts, H.J., Velazquez, E.R., Leijenaar, R.T., Parmar, C., Grossmann, P., Cavalho, S., Bussink, J., Monshouwer, R., Haibe-Kains, B., Rietveld, D., et al.: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat. Commun. 5 (2014)
American Cancer Society: Cancer Facts and Figures 2016 (2016)
Artan, Y., Haider, M., Langer, D.L., van der Kwast, T.H., Evans, A.J., Yang, Y., Wernick, M.N., Trachtenberg, J., Yetik, I.S., et al.: Prostate cancer localization with multispectral MRI using cost-sensitive support vector machines and conditional random fields. IEEE Trans. Image Process. 19(9), 2444–2455 (2010)
Canadian Cancer Society: Canadian Cancer Statistics (2016)
Chung, A.G., Shafiee, M.J., Kumar, D., Khalvati, F., Haider, M.A., Wong, A.: Discovery radiomics for multi-parametric MRI prostate cancer detection. arXiv preprint arXiv:1509.00111 (2014)
Chung, A.G., Shafiee, M.J., Kumar, D., Khalvati, F., Haider, M.A., Wong, A.: Discovery radiomics via layered random projection (LaRP) sequencers for prostate cancer classification. In: Annual Meeting of the Imaging Network of Ontario (2016)
Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55, 119–139 (1997)
Galar, M., Fernández, A., Barrenechea, E., Bustince, H., Herrera, F.: A review on ensembles for class imbalance problem: bagging, boosting and hybrid based approaches. IEEE Trans. Syst. Man Cybern. 42(4), 463–484 (2012)
Gevaert, O., Xu, J., Hoang, C.D., Leung, A.N., Xu, Y., Quon, A., Rubin, D.L., Napel, S., Plevritis, S.K.: Non-small cell lung cancer: identifying prognostic imaging biomarkers by leveraging public gene expression microarray datamethods and preliminary results. Radiology 264(2), 387–396 (2012)
Khalvati, F., Modhafar, A., Cameron, A., Wong, A., Haider, M.A.: A multi-parametric diffusion magnetic resonance imaging texture feature model for prostate cancer analysis. In: O’Donnell, L., et al. (eds.) Computational Diffusion MRI, pp. 79–88. Springer, Heidelberg (2014)
Khalvati, F., Wong, A., Haider, M.A.: Automated prostate cancer detection via comprehensive multi-parametric magnetic resonance imaging texture feature models. BMC Med. Imaging 15(1), 27 (2015)
Kumar, D., Shafiee, M.J., Chung, A.G., Khalvati, F., Haider, M.A., Wong, A.: Discovery radiomics for computed tomography cancer detection. arXiv preprint arXiv:1509.00117 (2014)
Lambin, P., Rios-Velazquez, E., Leijenaar, R., Carvalho, S., van Stiphout, R.G., Granton, P., Zegers, C.M., Gillies, R., Boellard, R., Dekker, A., et al.: Radiomics: extracting more information from medical images using advanced feature analysis. Eur. J. Cancer 48(4), 441–446 (2012)
LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)
Liu, X., Langer, D.L., Haider, M., Yang, Y., Wernick, M.N., Yetik, İ.Ş., et al.: Prostate cancer segmentation with simultaneous estimation of Markov random field parameters and class. IEEE Trans. Med. Imaging 28(6), 906–915 (2009)
Madabhushi, A., Feldman, M.D., Metaxas, D.N., Tomaszeweski, J., Chute, D.: Automated detection of prostatic adenocarcinoma from high-resolution ex vivo MRI. IEEE Trans. Med. Imaging 24(12), 1611–1625 (2005)
Ozer, S., Haider, M.A., Langer, D.L., van der Kwast, T.H., Evans, A.J., Wernick, M.N., Trachtenberg, J., Yetik, I.S.: Prostate cancer localization with multispectral MRI based on relevance vector machines. In: IEEE International Symposium on Biomedical Imaging: From Nano to Macro, ISBI 2009, pp. 73–76. IEEE (2009)
Ozer, S., Langer, D.L., Liu, X., Haider, M.A., van der Kwast, T.H., Evans, A.J., Yang, Y., Wernick, M.N., Yetik, I.S.: Supervised and unsupervised methods for prostate cancer segmentation with multispectral MRI. Med. Phys. 37(4), 1873–1883 (2010)
Peng, Y., Jiang, Y., Antic, T., Giger, M.L., Eggener, S., Oto, A.: A study of t2-weighted MR image texture features and diffusion-weighted MR image features for computer-aided diagnosis of prostate cancer. In: SPIE Medical Imaging, p. 86701H. International Society for Optics and Photonics (2013)
Rahman, M.M.L., Davis, D.N.: Addressing the class imbalance problems in medical datasets. Int. J. Mach. Learn. Comput. 3(2), 224–228 (2013)
Shafiee, M.J., Chung, A.G., Kumar, D., Khalvati, F., Haider, M.A., Wong, A.: Discovery radiomics via stochasticnet sequencers for cancer detection. In: NIPS Workshop on Machine Learning for Healthcare (2015)
Vos, P., Barentsz, J., Karssemeijer, N., Huisman, H.: Automatic computer-aided detection of prostate cancer based on multiparametric magnetic resonance image analysis. Phys. Med. Biol. 57(6), 1527 (2012)
Wong, A., Chung, A.G., Kumar, D., Shafiee, M.J., Khalvati, F., Haider, M.A.: Discovery radiomics for imaging-driven quantitative personalized cancer decision support. Vis. Lett. 1(1) (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Karimi, AH. et al. (2017). Discovery Radiomics via a Mixture of Deep ConvNet Sequencers for Multi-parametric MRI Prostate Cancer Classification. In: Karray, F., Campilho, A., Cheriet, F. (eds) Image Analysis and Recognition. ICIAR 2017. Lecture Notes in Computer Science(), vol 10317. Springer, Cham. https://doi.org/10.1007/978-3-319-59876-5_6
Download citation
DOI: https://doi.org/10.1007/978-3-319-59876-5_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-59875-8
Online ISBN: 978-3-319-59876-5
eBook Packages: Computer ScienceComputer Science (R0)