Abstract
This paper presents a method for breast density classification. Local ternary pattern operators are employed to model the appearance of the fibroglandular disk region instead of the whole breast region as the majority of current studies have done. The Support Vector Machine classifier is used to perform the classification and a stratified ten-fold cross-validation scheme is employed to evaluate the performance of the method. The proposed method achieved 82.33% accuracy which is comparable with some of the best methods in the literature based on the same dataset and evaluation scheme.
Similar content being viewed by others
References
Breast Cancer. ‘U.S. Breast Cancer Statistics’ (2016). http://www.breastcancer.org/symptoms/understand_bc/statistics. Accessed 6 Jan 2017
Oliver, A., Freixenet, J., Martí, R., Pont, J., Perez, E., Denton, E.R.E., Zwiggelaar, R.: A Novel breast tissue density classification methodology. IEEE Trans. Inf Technol. Biomed. 12(1), 55–65 (2008)
Bovis, K., Singh, S.: Classification of mammographic breast density using a combined classifier paradigm. In: 4th International Workshop on Digital Mammography, pp. 177–180 (2002)
Oliver, A., Tortajada, M., Lladó, X., Freixenet, J., Ganau, S., Tortajada, L., Vilagran, M., Sentś, M., Martí, R.: Breast density analysis using an automatic density segmentation algorithm. J. Digit. Imaging 28(5), 604–612 (2015)
Muštra, M., Grgić, M., Delać, K.: A novel breast tissue density classification methodology. Breast density classification using multiple feature selection. Automatika 53(4), 362–372 (2012)
Parthaláin, N.M., Jensen, R., Shen, Q., Zwiggelaar, R.: Fuzzy-rough approaches for mammographic risk analysis. Intell. Data Anal. 14(2), 225–244 (2010)
Chen, Z., Denton, E., Zwiggelaar, R.: Local feature based mamographic tissue pattern modelling and breast density classification. In: The 4th International Conference on Biomedical Engineering and Informatics, pp. 351–355 (2011)
Bosch, A., Munoz, X., Oliver, A., Martí, J.: Modeling and classifying breast tissue density in mammograms. In: Computer Vision and Pattern Recognition (CVPR 2006), pp. 1552–1558 (2006)
Chen, Z., Oliver, A., Denton, E., Zwiggelaar, R.: Automated mammographic risk classification based on breast density estimation. In: Sanches, J.M., Micó, L., Cardoso, J.S. (eds.) IbPRIA 2013. LNCS, vol. 7887, pp. 237–244. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38628-2_28
Byng, J.W., Boyd, N.F., Fishell, E., Jong, R.A., Yaffe, M.J.: Automated analysis of mammographic densities. Phys. Med. Biol. 41(5), 909–923 (1996)
He, W., Denton, E., Stafford, K., Zwiggelaar, R.: Mammographic image segmentation and risk classification based on mammographic parenchymal patterns and geometric moments. Biomed. Sig. Process. Control 6(3), 321–329 (2011)
Petroudi, S., Kadir, T., Brady, M.: Automatic classification of mammographic parenchymal patterns: a statistical approach. In: Proceedings of IEEE Conference on Engineering Medicine and Biology Society, vol. 1, pp. 798–801 (2003)
Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)
Nanni, L., Luminia, A., Brahnam, S.: Local binary patterns variants as texture descriptors for medical image analysis. Artif. Intell. Med. 49(2), 117–125 (2010)
Suckling, J., et al.: The mammographic image analysis society digital mammogram database. In: Proceedings of Excerpta Medica Internatinal Congress Series, pp. 375–378 (1994)
Hadid, A., Pietikainen, M.K., Zhao, G., Ahonen, T.: Computer Vision Using Local Binary Patterns. Springer, London (2011). pp. 13–47
Rampun, A., Winder, R.J., Morrow, P.J., Scotney, B.W.: Fully automated breast boundary and pectoral muscle segmentation in mammograms. Artificial Intelligence in Medicine (2016). (under review)
Kallenberg, M., et al.: Unsupervised deep learning applied to breast density segmentation and mammographic risk scoring. IEEE Trans. Med. Imaging 35(5), 1322–1331 (2016)
Rampun, A., et al.: Computer-aided detection of prostate cancer in T2-weighted MRI within the peripheral zone. Phy. Med. Biol. 61(13), 4796–4825 (2016)
Acknowledgments
This research was undertaken as part of the Decision Support and Information Management System for Breast Cancer (DESIREE) project. The project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 690238.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Rampun, A., Morrow, P., Scotney, B., Winder, J. (2017). Breast Density Classification Using Local Ternary Patterns in Mammograms. In: Karray, F., Campilho, A., Cheriet, F. (eds) Image Analysis and Recognition. ICIAR 2017. Lecture Notes in Computer Science(), vol 10317. Springer, Cham. https://doi.org/10.1007/978-3-319-59876-5_51
Download citation
DOI: https://doi.org/10.1007/978-3-319-59876-5_51
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-59875-8
Online ISBN: 978-3-319-59876-5
eBook Packages: Computer ScienceComputer Science (R0)