Breast Density Classification Using Local Ternary Patterns in Mammograms | SpringerLink
Skip to main content

Breast Density Classification Using Local Ternary Patterns in Mammograms

  • Conference paper
  • First Online:
Image Analysis and Recognition (ICIAR 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10317))

Included in the following conference series:

Abstract

This paper presents a method for breast density classification. Local ternary pattern operators are employed to model the appearance of the fibroglandular disk region instead of the whole breast region as the majority of current studies have done. The Support Vector Machine classifier is used to perform the classification and a stratified ten-fold cross-validation scheme is employed to evaluate the performance of the method. The proposed method achieved 82.33% accuracy which is comparable with some of the best methods in the literature based on the same dataset and evaluation scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Breast Cancer. ‘U.S. Breast Cancer Statistics’ (2016). http://www.breastcancer.org/symptoms/understand_bc/statistics. Accessed 6 Jan 2017

  2. Oliver, A., Freixenet, J., Martí, R., Pont, J., Perez, E., Denton, E.R.E., Zwiggelaar, R.: A Novel breast tissue density classification methodology. IEEE Trans. Inf Technol. Biomed. 12(1), 55–65 (2008)

    Article  Google Scholar 

  3. Bovis, K., Singh, S.: Classification of mammographic breast density using a combined classifier paradigm. In: 4th International Workshop on Digital Mammography, pp. 177–180 (2002)

    Google Scholar 

  4. Oliver, A., Tortajada, M., Lladó, X., Freixenet, J., Ganau, S., Tortajada, L., Vilagran, M., Sentś, M., Martí, R.: Breast density analysis using an automatic density segmentation algorithm. J. Digit. Imaging 28(5), 604–612 (2015)

    Article  Google Scholar 

  5. Muštra, M., Grgić, M., Delać, K.: A novel breast tissue density classification methodology. Breast density classification using multiple feature selection. Automatika 53(4), 362–372 (2012)

    Article  Google Scholar 

  6. Parthaláin, N.M., Jensen, R., Shen, Q., Zwiggelaar, R.: Fuzzy-rough approaches for mammographic risk analysis. Intell. Data Anal. 14(2), 225–244 (2010)

    Article  Google Scholar 

  7. Chen, Z., Denton, E., Zwiggelaar, R.: Local feature based mamographic tissue pattern modelling and breast density classification. In: The 4th International Conference on Biomedical Engineering and Informatics, pp. 351–355 (2011)

    Google Scholar 

  8. Bosch, A., Munoz, X., Oliver, A., Martí, J.: Modeling and classifying breast tissue density in mammograms. In: Computer Vision and Pattern Recognition (CVPR 2006), pp. 1552–1558 (2006)

    Google Scholar 

  9. Chen, Z., Oliver, A., Denton, E., Zwiggelaar, R.: Automated mammographic risk classification based on breast density estimation. In: Sanches, J.M., Micó, L., Cardoso, J.S. (eds.) IbPRIA 2013. LNCS, vol. 7887, pp. 237–244. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38628-2_28

    Chapter  Google Scholar 

  10. Byng, J.W., Boyd, N.F., Fishell, E., Jong, R.A., Yaffe, M.J.: Automated analysis of mammographic densities. Phys. Med. Biol. 41(5), 909–923 (1996)

    Article  Google Scholar 

  11. He, W., Denton, E., Stafford, K., Zwiggelaar, R.: Mammographic image segmentation and risk classification based on mammographic parenchymal patterns and geometric moments. Biomed. Sig. Process. Control 6(3), 321–329 (2011)

    Article  Google Scholar 

  12. Petroudi, S., Kadir, T., Brady, M.: Automatic classification of mammographic parenchymal patterns: a statistical approach. In: Proceedings of IEEE Conference on Engineering Medicine and Biology Society, vol. 1, pp. 798–801 (2003)

    Google Scholar 

  13. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)

    Article  Google Scholar 

  14. Nanni, L., Luminia, A., Brahnam, S.: Local binary patterns variants as texture descriptors for medical image analysis. Artif. Intell. Med. 49(2), 117–125 (2010)

    Article  Google Scholar 

  15. Suckling, J., et al.: The mammographic image analysis society digital mammogram database. In: Proceedings of Excerpta Medica Internatinal Congress Series, pp. 375–378 (1994)

    Google Scholar 

  16. Hadid, A., Pietikainen, M.K., Zhao, G., Ahonen, T.: Computer Vision Using Local Binary Patterns. Springer, London (2011). pp. 13–47

    Google Scholar 

  17. Rampun, A., Winder, R.J., Morrow, P.J., Scotney, B.W.: Fully automated breast boundary and pectoral muscle segmentation in mammograms. Artificial Intelligence in Medicine (2016). (under review)

    Google Scholar 

  18. Kallenberg, M., et al.: Unsupervised deep learning applied to breast density segmentation and mammographic risk scoring. IEEE Trans. Med. Imaging 35(5), 1322–1331 (2016)

    Article  Google Scholar 

  19. Rampun, A., et al.: Computer-aided detection of prostate cancer in T2-weighted MRI within the peripheral zone. Phy. Med. Biol. 61(13), 4796–4825 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

This research was undertaken as part of the Decision Support and Information Management System for Breast Cancer (DESIREE) project. The project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 690238.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrik Rampun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Rampun, A., Morrow, P., Scotney, B., Winder, J. (2017). Breast Density Classification Using Local Ternary Patterns in Mammograms. In: Karray, F., Campilho, A., Cheriet, F. (eds) Image Analysis and Recognition. ICIAR 2017. Lecture Notes in Computer Science(), vol 10317. Springer, Cham. https://doi.org/10.1007/978-3-319-59876-5_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59876-5_51

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59875-8

  • Online ISBN: 978-3-319-59876-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics