Abstract
Face recognition systems are gaining momentum with current developments in computer vision. At the same time, tactics to mislead these systems are getting more complex, and counter-measure approaches are necessary. Following the current progress with convolutional neural networks (CNN) in classification tasks, we present an approach based on transfer learning using a pre-trained CNN model using only static features to recognize photo, video or mask attacks. We tested our approach on the REPLAY-ATTACK and 3DMAD public databases. On the REPLAY-ATTACK database our accuracy was 99.04% and the half total error rate (HTER) of 1.20%. For the 3DMAD, our accuracy was of 100.00% and HTER 0.00%. Our results are comparable to the state-of-the-art.
Similar content being viewed by others
References
LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)
Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)
Seal, A., Ganguly, S., Bhattacharjee, D., Nasipuri, M., Basu, D.K.: Automated thermal face recognition based on minutiae extraction. CoRR abs/1309.1000 (2013)
Zhang, Z., Yi, D., Lei, Z., Li, S.Z.: Face liveness detection by learning multispectral reflectance distributions. In: Face and Gesture 2011, pp. 436–441, March 2011
Galbally, J., Marcel, S., Fierrez, J.: Biometric antispoofing methods: a survey in face recognition. IEEE Access 2, 1530–1552 (2014)
Li, J., Wang, Y., Tan, T., Jain, A.K.: Live face detection based on the analysis of fourier spectra, vol. 5404, pp. 296–303 (2004)
Tan, X., Li, Y., Liu, J., Jiang, L.: Face liveness detection from a single image with sparse low rank bilinear discriminative model. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6316, pp. 504–517. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15567-3_37
Peixoto, B., Michelassi, C., Rocha, A.: Face liveness detection under bad illumination conditions. In: 2011 18th IEEE International Conference on Image Processing, pp. 3557–3560, September 2011
Erdogmus, N., Marcel, S.: Spoofing 2D face recognition with 3D masks. IEEE Trans. Inf. Forensics Secur. 9(7), 1084–1097 (2014)
Pan, G., Sun, L., Wu, Z., Lao, S.: Eyeblink-based anti-spoofing in face recognition from a generic webcamera. In: 2007 IEEE 11th International Conference on Computer Vision, pp. 1–8, October 2007
Li, J.W.: Eye blink detection based on multiple gabor response waves. In: 2008 International Conference on Machine Learning and Cybernetics, vol. 5, pp. 2852–2856, July 2008
Liting, W., Xiaoqing, D., Chi, F.: Face live detection method based on physiological motion analysis. Tsinghua Sci. Technol. 14(6), 685–690 (2009)
Kollreider, K., Fronthaler, H., Bigun, J.: Verifying liveness by multiple experts in face biometrics. In: 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, pp. 1–6, June 2008
Anjos, A., Chakka, M.M., Marcel, S.: Motion-based counter-measures to photo attacks in face recognition. IET Biom. 3(3), 147–158 (2014)
Freitas Pereira, T., Anjos, A., Martino, J.M., Marcel, S.: LBP – TOP based countermeasure against face spoofing attacks. In: Park, J.-I., Kim, J. (eds.) ACCV 2012. LNCS, vol. 7728, pp. 121–132. Springer, Heidelberg (2013). doi:10.1007/978-3-642-37410-4_11
Komulainen, J., Hadid, A., Pietikäinen, M.: Context based face anti-spoofing. In: 2013 IEEE Sixth International Conference on Biometrics: Theory, Applications and Systems (BTAS), pp. 1–8, September 2013
Feng, L., Po, L.M., Li, Y., Xu, X., Yuan, F., Cheung, T.C.H., Cheung, K.W.: Integration of image quality and motion cues for face anti-spoofing: a neural network approach. J. Vis. Commun. Image Represent. 38, 451–460 (2016)
Yang, J., Lei, Z., Li, S.Z.: Learn convolutional neural network for face anti-spoofing. CoRR abs/1408.5601 (2014)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)
Menotti, D., Chiachia, G., Pinto, A., Schwartz, W.R., Pedrini, H., Falcão, A.X., Rocha, A.: Deep representations for iris, face, and fingerprint spoofing detection. IEEE Trans. Inf. Forensics Secur. 10(4), 864–879 (2015)
Alotaibi, A., Mahmood, A.: Deep face liveness detection based on nonlinear diffusion using convolution neural network. Sig. Image Video Process. 11, 1–8 (2016)
Girshick, R., Donahue, J., Darrell, T., Malik, J.: Region-based convolutional networks for accurate object detection and segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 38(1), 142–158 (2016)
Noh, H., Hong, S., Han, B.: Learning deconvolution network for semantic segmentation. In: The IEEE International Conference on Computer Vision (ICCV), December 2015
Shin, H.C., Roth, H.R., Gao, M., Lu, L., Xu, Z., Nogues, I., Yao, J., Mollura, D., Summers, R.M.: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans. Med. Imaging 35(5), 1285–1298 (2016)
Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in deep neural networks? In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 27, pp. 3320–3328. Curran Associates, Inc. (2014)
Sharif Razavian, A., Azizpour, H., Sullivan, J., Carlsson, S.: CNN features off-the-shelf: an astounding baseline for recognition. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, June 2014
Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. (IJCV) 115(3), 211–252 (2015)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR abs/1409.1556 (2014)
Chollet, F.: Keras (2015). https://github.com/fchollet/keras
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. CoRR abs/1412.6980 (2014)
Duch, W., Jankowski, N.: Survey of neural transfer functions. Neural Comput. Surv. 2, 163–213 (1999)
Chingovska, I., Anjos, A., Marcel, S.: On the effectiveness of local binary patterns in face anti-spoofing. In: 2012 BIOSIG - Proceedings of the International Conference of Biometrics Special Interest Group (BIOSIG), pp. 1–7, September 2012
Erdogmus, N., Marcel, S.: Spoofing in 2D face recognition with 3D masks and anti-spoofing with kinect. In: 2013 IEEE Sixth International Conference on Biometrics: Theory, Applications and Systems (BTAS), pp. 1–6, September 2013
Bastien, F., Lamblin, P., Pascanu, R., Bergstra, J., Goodfellow, I.J., Bergeron, A., Bouchard, N., Bengio, Y.: Theano: new features and speed improvements. In: Deep Learning and Unsupervised Feature Learning NIPS 2012 Workshop (2012)
Amos, B., Ludwiczuk, B., Satyanarayanan, M.: Openface: a general-purpose face recognition library with mobile applications. Technical report, CMU-CS-16-118, CMU School of Computer Science (2016)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Lucena, O., Junior, A., Moia, V., Souza, R., Valle, E., Lotufo, R. (2017). Transfer Learning Using Convolutional Neural Networks for Face Anti-spoofing. In: Karray, F., Campilho, A., Cheriet, F. (eds) Image Analysis and Recognition. ICIAR 2017. Lecture Notes in Computer Science(), vol 10317. Springer, Cham. https://doi.org/10.1007/978-3-319-59876-5_4
Download citation
DOI: https://doi.org/10.1007/978-3-319-59876-5_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-59875-8
Online ISBN: 978-3-319-59876-5
eBook Packages: Computer ScienceComputer Science (R0)