Abstract
Koniocortex-Like Network is a novel category of Bio-Inspired Neural Networks whose architecture and properties are inspired in the biological koniocortex, the first layer of the cortex that receives information from the thalamus. In the Koniocortex-Like Network competition and pattern classification emerges naturally due to the interplay of inhibitory interneurons, metaplasticity and intrinsic plasticity. Recently proposed, it has shown a big potential for complex tasks with unsupervised learning. Now for the first time, its competitive results are proved in a relevant standard real application that is the objective of state-of-the-art research: the diagnosis of breast cancer data from the Wisconsin Breast Cancer Database.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abraham, W.C., Bear, M.F.: Metaplasticity: the plasticity of synaptic plasticity. Trends Neurosci. 19, 126–130 (1996)
Abraham, W.C., Tate, W.P.: Metaplasticity: a new vista across the field of synaptic plasticity. Prog. Neurobiol. 52, 303–323 (1997)
Andina, D., Alvarez-Vellisco, A., Jevtic, A., Fombellida, J.: Artificial metaplasticity can improve artificial neural network learning. Intell. Autom. Soft Comput. Spec. Issue Sig. Process. Soft Comput. 15(4), 681–694 (2009)
Andina, D., Ropero-Pelaez, J.: On the biological plausibility of artificial metaplasticity learning algorithm. Neurocomputing (2012). http://dx.doi.org/10.1016/j.neucom.2012.09.028
Artola, A., Brocher, S., Singer, W.: Different voltage-dependent threshold for inducing long-term depression and long-term potentiation in slices of rat visual córtex. Nature 347, 69–72 (1990)
Desai, N.S.: Homeostatic plasticity in the CNS: synaptic and intrinsic forms. J. Physiol. 97(4–6), 391–402 (2003)
Desai, N.S., Rutherford, L.C., Turrigiano, G.G.: Plasticity in the intrinsic excitability of cortical pyramidal neurons. Nat. Neurosci. 2, 515–520 (1999)
Ferster, D., Chung, S., Wheat, H.: Orientation selectivity of thalamic input to simple cells of cat visual cortex. Nature 380(6571), 249–252 (1996)
Fukai, T., Tanaka, S.: A simple neural network exhibiting selective activation of neuronal ensembles: from winner-take-all to winners-share-all. Neural Comput. 9(1), 77–97 (1997)
Kaski, S., Kohonen, T.: Winner-take-all networks for physiological models of competitive learning. Neural Netw. 7(6/7), 973–984 (1994)
Mao, Z.H., Massaquoi, S.G.: Dynamics of Winner-Take-All competition in recurrent neural networks with lateral inhibition. IEEE Trans. Neural Netw. 18, 55–69 (2007)
Marcano-Cedeño, A., Quintanilla-Dominguez, J., Andina, D.: Breast cancer classification applying artificial metaplasticity algorithm. Neurocomputing 74(8), 1243–1250 (2011)
Miller, K.D.: Synaptic economics: competition and cooperation in synaptic plasticity. Neuron 17, 371–374 (1996)
Quintanilla-Dominguez, J., Cortina-Januchs, M.G., Ojeda-Magaa, B., Jevtic, A., Vega-Corona, A., Andina, D.: Microcalcification detection applying artificial neural networks and mathematical morphology in digital mammograms. In: World Automation Congress (WAC) (2010)
Ropero-Peláez, F.J., Andina, D.: Do biological synapses perform probabilistic computations? Neurocomputing (2012). http://dx.doi.org/10.1016/j.neucom.2012.08.042
Ropero-Peláez, F.J., Andina, D.: The Koniocortex-like network: a new biologically plausible unsupervised neural network. In: Ferrández Vicente, J.M., Álvarez-Sánchez, J.R., de la Paz López, F., Toledo-Moreo, F.J., Adeli, H. (eds.) IWINAC 2015. LNCS, vol. 9107, pp. 163–174. Springer, Cham (2015). doi:10.1007/978-3-319-18914-7_17
Ropero-Peláez, F.J., Aguiar-Furucho, M.A., Andina, D.: Intrinsic plasticity for natural competition in Koniocortex-like neural networks. Int. J. Neural Syst. 26(5), 1650040 (2016). http://www.worldscientific.com/doi/abs/10.1142/S0129065716500404
Yang, J.F., Chen, C.M.: Winner-Take-All neural network using the highest threshold. IEEE Trans. Neural Netw. 11, 194–199 (2000)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Fombellida, J., Ropero-Peláez, F.J., Andina, D. (2017). Koniocortex-Like Network Unsupervised Learning Surpasses Supervised Results on WBCD Breast Cancer Database. In: Ferrández Vicente, J., Álvarez-Sánchez, J., de la Paz López, F., Toledo Moreo, J., Adeli, H. (eds) Biomedical Applications Based on Natural and Artificial Computing. IWINAC 2017. Lecture Notes in Computer Science(), vol 10338. Springer, Cham. https://doi.org/10.1007/978-3-319-59773-7_4
Download citation
DOI: https://doi.org/10.1007/978-3-319-59773-7_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-59772-0
Online ISBN: 978-3-319-59773-7
eBook Packages: Computer ScienceComputer Science (R0)