Knowledge-Based Trace Abstraction for Semantic Process Mining | SpringerLink
Skip to main content

Knowledge-Based Trace Abstraction for Semantic Process Mining

  • Conference paper
  • First Online:
Artificial Intelligence in Medicine (AIME 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10259))

Included in the following conference series:

Abstract

Many hospital information systems nowadays record data about the executed medical process instances in the form of traces in an event log. In this paper we present a framework able to convert actions found in the traces into higher level concepts, on the basis of domain knowledge. Abstracted traces are then provided as an input to semantic process mining. The approach has been tested in stroke care, where we show how the abstraction mechanism allows the user to mine process models that are easier to interpret, since unnecessary details are hidden, but key behaviors are clearly visible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 7435
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 9294
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alves de Medeiros, A.K., van der Aalst, W.M.P., Pedrinaci, C.: Semantic process mining tools: core building blocks. In: Golden, W., Acton, T., Conboy, K., van der Heijden, H., Tuunainen, V.K. (eds.) 16th European Conference on Information Systems, ECIS 2008, Galway, Ireland, pp. 1953–1964 (2008)

    Google Scholar 

  2. Van der Aalst, W.: Process Mining. Discovery, Conformance and Enhancement of Business Processes. Springer, Heidelberg (2011)

    MATH  Google Scholar 

  3. Grando, M.A., Schonenberg, M.H., van der Aalst, W.M.P.: Semantic process mining for the verification of medical recommendations. In: Traver, V., Fred, A.L.N., Filipe, J., Gamboa, H. (eds.) Proceedings of the International Conference on Health Informatics, HEALTHINF 2011, Rome, Italy, 26–29 January 2011, pp. 5–16. SciTePress, Setúbal (2011)

    Google Scholar 

  4. IEEE Taskforce on Process Mining: Process Mining Manifesto. http://www.win.tue.nl/ieeetfpm. Accessed 4 Nov 2013

  5. van Dongen, B., Alves De Medeiros, A., Verbeek, H., Weijters, A., Van der Aalst, W.: The proM framework: a new era in process mining tool support. In: Ciardo, G., Darondeau, P. (eds.) Knowledge Mangement and its Integrative Elements, pp. 444–454. Springer, Berlin (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefania Montani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Montani, S., Striani, M., Quaglini, S., Cavallini, A., Leonardi, G. (2017). Knowledge-Based Trace Abstraction for Semantic Process Mining. In: ten Teije, A., Popow, C., Holmes, J., Sacchi, L. (eds) Artificial Intelligence in Medicine. AIME 2017. Lecture Notes in Computer Science(), vol 10259. Springer, Cham. https://doi.org/10.1007/978-3-319-59758-4_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59758-4_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59757-7

  • Online ISBN: 978-3-319-59758-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics