Temporal Dynamics of Human Emotions: An Study Combining Images and Music | SpringerLink
Skip to main content

Temporal Dynamics of Human Emotions: An Study Combining Images and Music

  • Conference paper
  • First Online:
Natural and Artificial Computation for Biomedicine and Neuroscience (IWINAC 2017)

Abstract

Much is currently being studied on emotions and their temporal and spatial location. In this framework it is important to considerer the temporal dynamics of affective responses and also the underlying brain activity. In this work we use electroencephalographic (EEG) recordings to investigate the neural activity of 13 human volunteers while looking standardized images (positive/negative). Furthermore the subjects were, at the same time, listening to pleasant or unpleasant music. Then we analyzed topographic changes in EEG activity in the time domain. When we compared positive images with positive music versus negative images with negative music we found a significant time window in the period of time 448–632 ms after the stimulus appears, with a clear right lateralization for negative stimuli and left lateralization for positive stimuli. By contrast when we compared positive images with negative music versus negative images with positive music, we found a delayed window compared to the previous case (592–618 ms) and the marked lateralization disappeared. These results demonstrate the feasibility and usefulness of this approach to explore the temporal dynamics of human emotions and could help to set the basis for future studies of music perception and emotions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cacioppo, J.T., Berntson, G.G.: Relationship between attitudes and evaluative space: a critical review, with emphasis on the separability of positive and negative substrates. Psychol. Bull. 115(3), 401–423 (1994). doi:10.1037/0033-2909.115.3.401

    Article  Google Scholar 

  2. Davidson, R.J., Ekman, P., Saron, C.D., Senulis, J.A., Friesen, W.V.: Approach-withdrawal and cerebral asymmetry: emotional expression and brain physiology. I. J. Pers. Soc. Psychol. 58(2), 330–341 (1990). http://www.ncbi.nlm.nih.gov/pubmed/2319445

    Google Scholar 

  3. Fanselow, M.S.: Neural organization of the defensive behavior system responsible for fear. Psychon. Bull. Rev. 1(4), 429–438 (1994). doi:10.3758/BF03210947. http://www.ncbi.nlm.nih.gov/pubmed/24203551

    Article  Google Scholar 

  4. Royet, J.-P., Zald, D., Versace, R., Costes, N., Lavenne, F., Koenig, O., Gervais, R.: Emotional responses to pleasant and unpleasant olfactory, visual, and auditory stimuli: a positron emission tomography study. J. Neurosci. 20(20), 7752–7759 (2000)

    Google Scholar 

  5. Vink, M., Derks, J.M., Hoogendam, J.M., Hillegers, M., Kahn, R.S.: Functional differences in emotion processing during adolescence and early adulthood. NeuroImage 91, 70–76 (2014). doi:10.1016/j.neuroimage.2014.01.035. http://www.ncbi.nlm.nih.gov/pubmed/24468408, http://linkinghub.elsevier.com/retrieve/pii/S1053811914000561

    Article  Google Scholar 

  6. Lang, P., Bradley, M., Cuthbert, B.: International affective picture system (IAPS): technical manual and affective ratings. In: NIMH Center for the Study of Emotion and Attention, pp. 39–58 (1997). doi:10.1027/0269-8803/a000147, arXiv:0005-7916(93)E0016-Z, http://www.unifesp.br/dpsicobio/adap/instructions.pdf%5Cn, http://econtent.hogrefe.com/doi/abs/10.1027/0269-8803/a000147

  7. Oldfield, R.: The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9(1), 97–113 (1971). doi:10.1016/0028-3932(71)90067-4. http://linkinghub.elsevier.com/retrieve/pii/0028393271900674

    Article  Google Scholar 

  8. Murcia, M.D.G., Lopez-Gordo, M.A., Ortíz, M.J., Ferrández, J.M., Fernández, E.: Spatio-temporal dynamics of images with emotional bivalence. In: Ferrández Vicente, J.M., Álvarez-Sánchez, J.R., de la Paz López, F., Toledo-Moreo, F.J., Adeli, H. (eds.) IWINAC 2015. LNCS, vol. 9107, pp. 203–212. Springer, Cham (2015). doi:10.1007/978-3-319-18914-7_21

    Chapter  Google Scholar 

  9. Sammler, D., Grigutsch, M., Fritz, T., Koelsch, S.: Music and emotion: electrophysiological correlates of the processing of pleasant and unpleasant music. Psychophysiology 44(2), 293–304 (2007). doi:10.1111/j.1469-8986.2007.00497.x. http://doi.wiley.com/10.1111/j.1469-8986.2007.00497.x

    Article  Google Scholar 

  10. Klem, G.H., Lüders, H.O., Jasper, H.H., Elger, C.: The ten-twenty electrode system of the international federation. International federation of clinical neurophysiology. Electroencephalogr. Clin. Neurophysiol. 52(Suppl.), 3–6 (1999). http://www.ncbi.nlm.nih.gov/pubmed/10590970

    Google Scholar 

  11. Ferree, T.C., Luu, P., Russell, G.S., Tucker, D.M.: Scalp electrode impedance, infection risk, and EEG data quality. Clin. Neurophysiol. 112(3), 536–544 (2001). doi:10.1016/S1388-2457(00)00533-2

    Article  Google Scholar 

  12. Meghdadi, A.H., Fazel-Rezai, R., Aghakhani, Y.: Detecting determinism in EEG signals using principal component analysis and surrogate data testing. In: 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 6209–6212. IEEE (2006). doi:10.1109/IEMBS.2006.260679, http://www.ncbi.nlm.nih.gov/pubmed/17946363, http://ieeexplore.ieee.org/document/4463227/

  13. Murray, M.M., Brunet, D., Michel, C.M.: Topographic ERP analyses: a step-by-step tutorial review. Brain Topogr. 20(4), 249–264 (2008). doi:10.1007/s10548-008-0054-5

    Article  Google Scholar 

  14. Brunet, D., Murray, M.M., Michel, C.M.: Spatiotemporal analysis of multichannel EEG: CARTOOL. Comput. Intell. Neurosci. 2011, 1–15 (2011). doi:10.1155/2011/813870

    Article  Google Scholar 

  15. Martinovic, J., Jones, A., Christiansen, P., Rose, A.K., Hogarth, L., Field, M.: Electrophysiological responses to alcohol cues are not associated with Pavlovian-to-instrumental transfer in social drinkers. PLoS ONE 9(4), e94605 (2014). doi:10.1371/journal.pone.0094605. http://dx.plos.org/10.1371/journal.pone.0094605

    Article  Google Scholar 

  16. Laganaro, M., Valente, A., Perret, C.: Time course of word production in fast and slow speakers: a high density ERP topographic study. NeuroImage 59(4), 3881–3888 (2012). doi:10.1016/j.neuroimage.2011.10.082. http://linkinghub.elsevier.com/retrieve/pii/S1053811911012523

    Article  Google Scholar 

  17. Skrandies, W.: Global field power and topographic similarity. Brain Topogr. 3(1), 137–141 (1990). http://www.ncbi.nlm.nih.gov/pubmed/2094301

    Article  Google Scholar 

  18. Rosenblad, A., Manly, B.F.J.: Randomization, Bootstrap and Monte Carlo Methods in Biology, 3rd edn. Chapman & Hall/CRC, Boca Raton (2007) 455 p. ISBN: 1-58488-541-6, Comput. Stat. 24(2), 371-372 (2009). doi:10.1007/s00180-009-0150-3

  19. Pascual-Marqui, R.D.: Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find. Exp. Clin. Pharmacol. 24(Suppl D), 5–12 (2002). http://www.ncbi.nlm.nih.gov/pubmed/12575463

    Google Scholar 

  20. Costa, T., Cauda, F., Crini, M., Tatu, M.-K., Celeghin, A., de Gelder, B., Tamietto, M.: Temporal and spatial neural dynamics in the perception of basic emotions from complex scenes. Soc. Cogn. Affect. Neurosci. 9(11), 1690-1703 (2014). doi:10.1093/scan/nst164. http://www.ncbi.nlm.nih.gov/pubmed/24214921, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4221209, https://academic.oup.com/scan/article-lookup/doi/10.1093/scan/nst164

  21. Fusar-Poli, P., Placentino, A., Carletti, F., Allen, P., Landi, P., Abbamonte, M., Barale, F., Perez, J., McGuire, P., Politi, P.L.: Laterality effect on emotional faces processing: ALE meta-analysis of evidence. Neurosci. Lett. 452(3), 262–267 (2009). doi:10.1016/j.neulet.2009.01.065

    Article  Google Scholar 

Download references

Acknowledgement

This work has been supported in part by the Spanish national research program (MAT2015-69967-C3-1), by a research grant of the Spanish Blind Organization (ONCE) by the Ministry of Education of Spain (FPU grant AP-2013/01842) and by Séneca Foundation - Agency of Science and Technology of the Region of Murcia.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. D. Grima Murcia or Eduardo Fernández .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Grima Murcia, M.D., Sorinas, J., Lopez-Gordo, M.A., Ferrández, J.M., Fernández, E. (2017). Temporal Dynamics of Human Emotions: An Study Combining Images and Music. In: Ferrández Vicente, J., Álvarez-Sánchez, J., de la Paz López, F., Toledo Moreo, J., Adeli, H. (eds) Natural and Artificial Computation for Biomedicine and Neuroscience. IWINAC 2017. Lecture Notes in Computer Science(), vol 10337. Springer, Cham. https://doi.org/10.1007/978-3-319-59740-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59740-9_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59739-3

  • Online ISBN: 978-3-319-59740-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics