Abstract
Much is currently being studied on emotions and their temporal and spatial location. In this framework it is important to considerer the temporal dynamics of affective responses and also the underlying brain activity. In this work we use electroencephalographic (EEG) recordings to investigate the neural activity of 13 human volunteers while looking standardized images (positive/negative). Furthermore the subjects were, at the same time, listening to pleasant or unpleasant music. Then we analyzed topographic changes in EEG activity in the time domain. When we compared positive images with positive music versus negative images with negative music we found a significant time window in the period of time 448–632 ms after the stimulus appears, with a clear right lateralization for negative stimuli and left lateralization for positive stimuli. By contrast when we compared positive images with negative music versus negative images with positive music, we found a delayed window compared to the previous case (592–618 ms) and the marked lateralization disappeared. These results demonstrate the feasibility and usefulness of this approach to explore the temporal dynamics of human emotions and could help to set the basis for future studies of music perception and emotions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Cacioppo, J.T., Berntson, G.G.: Relationship between attitudes and evaluative space: a critical review, with emphasis on the separability of positive and negative substrates. Psychol. Bull. 115(3), 401–423 (1994). doi:10.1037/0033-2909.115.3.401
Davidson, R.J., Ekman, P., Saron, C.D., Senulis, J.A., Friesen, W.V.: Approach-withdrawal and cerebral asymmetry: emotional expression and brain physiology. I. J. Pers. Soc. Psychol. 58(2), 330–341 (1990). http://www.ncbi.nlm.nih.gov/pubmed/2319445
Fanselow, M.S.: Neural organization of the defensive behavior system responsible for fear. Psychon. Bull. Rev. 1(4), 429–438 (1994). doi:10.3758/BF03210947. http://www.ncbi.nlm.nih.gov/pubmed/24203551
Royet, J.-P., Zald, D., Versace, R., Costes, N., Lavenne, F., Koenig, O., Gervais, R.: Emotional responses to pleasant and unpleasant olfactory, visual, and auditory stimuli: a positron emission tomography study. J. Neurosci. 20(20), 7752–7759 (2000)
Vink, M., Derks, J.M., Hoogendam, J.M., Hillegers, M., Kahn, R.S.: Functional differences in emotion processing during adolescence and early adulthood. NeuroImage 91, 70–76 (2014). doi:10.1016/j.neuroimage.2014.01.035. http://www.ncbi.nlm.nih.gov/pubmed/24468408, http://linkinghub.elsevier.com/retrieve/pii/S1053811914000561
Lang, P., Bradley, M., Cuthbert, B.: International affective picture system (IAPS): technical manual and affective ratings. In: NIMH Center for the Study of Emotion and Attention, pp. 39–58 (1997). doi:10.1027/0269-8803/a000147, arXiv:0005-7916(93)E0016-Z, http://www.unifesp.br/dpsicobio/adap/instructions.pdf%5Cn, http://econtent.hogrefe.com/doi/abs/10.1027/0269-8803/a000147
Oldfield, R.: The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9(1), 97–113 (1971). doi:10.1016/0028-3932(71)90067-4. http://linkinghub.elsevier.com/retrieve/pii/0028393271900674
Murcia, M.D.G., Lopez-Gordo, M.A., Ortíz, M.J., Ferrández, J.M., Fernández, E.: Spatio-temporal dynamics of images with emotional bivalence. In: Ferrández Vicente, J.M., Álvarez-Sánchez, J.R., de la Paz López, F., Toledo-Moreo, F.J., Adeli, H. (eds.) IWINAC 2015. LNCS, vol. 9107, pp. 203–212. Springer, Cham (2015). doi:10.1007/978-3-319-18914-7_21
Sammler, D., Grigutsch, M., Fritz, T., Koelsch, S.: Music and emotion: electrophysiological correlates of the processing of pleasant and unpleasant music. Psychophysiology 44(2), 293–304 (2007). doi:10.1111/j.1469-8986.2007.00497.x. http://doi.wiley.com/10.1111/j.1469-8986.2007.00497.x
Klem, G.H., Lüders, H.O., Jasper, H.H., Elger, C.: The ten-twenty electrode system of the international federation. International federation of clinical neurophysiology. Electroencephalogr. Clin. Neurophysiol. 52(Suppl.), 3–6 (1999). http://www.ncbi.nlm.nih.gov/pubmed/10590970
Ferree, T.C., Luu, P., Russell, G.S., Tucker, D.M.: Scalp electrode impedance, infection risk, and EEG data quality. Clin. Neurophysiol. 112(3), 536–544 (2001). doi:10.1016/S1388-2457(00)00533-2
Meghdadi, A.H., Fazel-Rezai, R., Aghakhani, Y.: Detecting determinism in EEG signals using principal component analysis and surrogate data testing. In: 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 6209–6212. IEEE (2006). doi:10.1109/IEMBS.2006.260679, http://www.ncbi.nlm.nih.gov/pubmed/17946363, http://ieeexplore.ieee.org/document/4463227/
Murray, M.M., Brunet, D., Michel, C.M.: Topographic ERP analyses: a step-by-step tutorial review. Brain Topogr. 20(4), 249–264 (2008). doi:10.1007/s10548-008-0054-5
Brunet, D., Murray, M.M., Michel, C.M.: Spatiotemporal analysis of multichannel EEG: CARTOOL. Comput. Intell. Neurosci. 2011, 1–15 (2011). doi:10.1155/2011/813870
Martinovic, J., Jones, A., Christiansen, P., Rose, A.K., Hogarth, L., Field, M.: Electrophysiological responses to alcohol cues are not associated with Pavlovian-to-instrumental transfer in social drinkers. PLoS ONE 9(4), e94605 (2014). doi:10.1371/journal.pone.0094605. http://dx.plos.org/10.1371/journal.pone.0094605
Laganaro, M., Valente, A., Perret, C.: Time course of word production in fast and slow speakers: a high density ERP topographic study. NeuroImage 59(4), 3881–3888 (2012). doi:10.1016/j.neuroimage.2011.10.082. http://linkinghub.elsevier.com/retrieve/pii/S1053811911012523
Skrandies, W.: Global field power and topographic similarity. Brain Topogr. 3(1), 137–141 (1990). http://www.ncbi.nlm.nih.gov/pubmed/2094301
Rosenblad, A., Manly, B.F.J.: Randomization, Bootstrap and Monte Carlo Methods in Biology, 3rd edn. Chapman & Hall/CRC, Boca Raton (2007) 455 p. ISBN: 1-58488-541-6, Comput. Stat. 24(2), 371-372 (2009). doi:10.1007/s00180-009-0150-3
Pascual-Marqui, R.D.: Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find. Exp. Clin. Pharmacol. 24(Suppl D), 5–12 (2002). http://www.ncbi.nlm.nih.gov/pubmed/12575463
Costa, T., Cauda, F., Crini, M., Tatu, M.-K., Celeghin, A., de Gelder, B., Tamietto, M.: Temporal and spatial neural dynamics in the perception of basic emotions from complex scenes. Soc. Cogn. Affect. Neurosci. 9(11), 1690-1703 (2014). doi:10.1093/scan/nst164. http://www.ncbi.nlm.nih.gov/pubmed/24214921, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4221209, https://academic.oup.com/scan/article-lookup/doi/10.1093/scan/nst164
Fusar-Poli, P., Placentino, A., Carletti, F., Allen, P., Landi, P., Abbamonte, M., Barale, F., Perez, J., McGuire, P., Politi, P.L.: Laterality effect on emotional faces processing: ALE meta-analysis of evidence. Neurosci. Lett. 452(3), 262–267 (2009). doi:10.1016/j.neulet.2009.01.065
Acknowledgement
This work has been supported in part by the Spanish national research program (MAT2015-69967-C3-1), by a research grant of the Spanish Blind Organization (ONCE) by the Ministry of Education of Spain (FPU grant AP-2013/01842) and by Séneca Foundation - Agency of Science and Technology of the Region of Murcia.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Grima Murcia, M.D., Sorinas, J., Lopez-Gordo, M.A., Ferrández, J.M., Fernández, E. (2017). Temporal Dynamics of Human Emotions: An Study Combining Images and Music. In: Ferrández Vicente, J., Álvarez-Sánchez, J., de la Paz López, F., Toledo Moreo, J., Adeli, H. (eds) Natural and Artificial Computation for Biomedicine and Neuroscience. IWINAC 2017. Lecture Notes in Computer Science(), vol 10337. Springer, Cham. https://doi.org/10.1007/978-3-319-59740-9_24
Download citation
DOI: https://doi.org/10.1007/978-3-319-59740-9_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-59739-3
Online ISBN: 978-3-319-59740-9
eBook Packages: Computer ScienceComputer Science (R0)