Abstract
This paper presents an efficient technique for real-time recognition of human activities by using accelerometer and photoplethysmography (PPG) data. It is based on singular value decomposition (SVD) and truncated Karhunen-Loève transform (KLT) for feature extraction and reduction, and Bayesian classification for class recognition. Due to the nature of signals, and being the algorithm independent from the orientation of the inertial sensor, this technique is particularly suitable for implementation in smartwatches in order to both recognize the exercise being performed and improve the motion artifact (MA) removal from PPG signal for accurate heart rate (HR) estimation. In order to demonstrate the validity of this methodology, it has been successfully applied to a database of accelerometer and PPG data derived from four dynamic activities.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: Energy efficient smartphone-based activity recognition using fixed-point arithmetic. J. Univ. Comput. Sci. 19(9), 1295–1314 (2013)
Bacà, A., Biagetti, G., Camilletti, M., Crippa, P., Falaschetti, L., Orcioni, S., Rossini, L., Tonelli, D., Turchetti, C.: CARMA: a robust motion artifact reduction algorithm for heart rate monitoring from PPG signals. In: 23rd European Signal Processing Conference, pp. 2696–2700, September 2015
Biagetti, G., Crippa, P., Curzi, A., Orcioni, S., Turchetti, C.: A multi-class ECG beat classifier based on the truncated KLT representation. In: UKSim-AMSS 8th European Modelling Symposium on Computer Modelling and Simulation (EMS 2014), pp. 93–98, October 2014
Biagetti, G., Crippa, P., Curzi, A., Orcioni, S., Turchetti, C.: Analysis of the EMG signal during cyclic movements using multicomponent AM-FM decomposition. IEEE J. Biomed. Health Inf. 19(5), 1672–1681 (2015)
Biagetti, G., Crippa, P., Falaschetti, L., Orcioni, S., Turchetti, C.: Artifact reduction in photoplethysmography using Bayesian classification for physical exercise identification. In: Proceedings of the 5th International Conference on Pattern Recognition Applications and Methods, Rome, Italy, pp. 467–474, February 2016
Biagetti, G., Crippa, P., Falaschetti, L., Orcioni, S., Turchetti, C.: Wireless surface electromyograph and electrocardiograph system on 802.15.4. IEEE Trans. Consum. Electron. 62(3), 258–266 (2016)
Biagetti, G., Crippa, P., Falaschetti, L., Orcioni, S., Turchetti, C.: A rule based framework for smart training using sEMG signal. In: Neves-Silva, R., Jain, L.C., Howlett, R.J. (eds.) Intelligent Decision Technologies, Smart Innovation, Systems and Technologies, vol. 39, pp. 89–99. Springer, Cham (2015)
Biagetti, G., Crippa, P., Falaschetti, L., Orcioni, S., Turchetti, C.: An efficient technique for real-time human activity classification using accelerometer data. In: Czarnowski, I., Caballero, A.M., Howlett, R.J., Jain, L.C. (eds.) Intelligent Decision Technologies 2016: Proceedings of the 8th KES International Conference on Intelligent Decision Technologies - Part I, pp. 425–434. Springer, Cham (2016)
Biagetti, G., Crippa, P., Falaschetti, L., Orcioni, S., Turchetti, C.: Homomorphic deconvolution for MUAP estimation from surface EMG signals. IEEE J. Biomed. Health Inf. 21(2), 328–338 (2017)
Biagetti, G., Crippa, P., Orcioni, S., Turchetti, C.: An analog front-end for combined EMG/ECG wireless sensors. In: Conti, M., Martínez Madrid, N., Seepold, R., Orcioni, S. (eds.) Mobile Networks for Biometric Data Analysis, pp. 215–224. Springer, Cham (2016)
Biagetti, G., Crippa, P., Orcioni, S., Turchetti, C.: Surface EMG fatigue analysis by means of homomorphic deconvolution. In: Conti, M., Martínez Madrid, N., Seepold, R., Orcioni, S. (eds.) Mobile Networks for Biometric Data Analysis, pp. 173–188. Springer, Cham (2016)
Casson, A.J., Galvez, A.V., Jarchi, D.: Gyroscope vs. accelerometer measurements of motion from wrist PPG during physical exercise. ICT Expr. 2(4), 175–179 (2016)
Catal, C., Tufekci, S., Pirmit, E., Kocabag, G.: On the use of ensemble of classifiers for accelerometer-based activity recognition. Appl. Soft. Comput. 37, 1018–1022 (2015)
Crippa, P., Curzi, A., Falaschetti, L., Turchetti, C.: Multi-class ECG beat classification based on a Gaussian mixture model of Karhunen-Loève transform. Int. J. Simul. Syst. Sci. Technol. 16(1), 2.1–2.10 (2015)
Dernbach, S., Das, B., Krishnan, N.C., Thomas, B.L., Cook, D.J.: Simple and complex activity recognition through smart phones. In: 8th International Conference on Intelligent Environments, pp. 214–221, June 2012
Figueiredo, M.A.F., Jain, A.K.: Unsupervised learning of finite mixture models. IEEE Trans. Pattern Anal. Mach. Intell. 24(3), 381–396 (2002)
Khan, A., Lee, Y.K., Lee, S., Kim, T.S.: Human activity recognition via an accelerometer-enabled-smartphone using kernel discriminant analysis. In: 2010 5th International Conference on Future Information Technology, pp. 1–6, May 2010
Mannini, A., Intille, S.S., Rosenberger, M., Sabatini, A.M., Haskell, W.: Activity recognition using a single accelerometer placed at the wrist or ankle. Med. Sci. Sports Exerc. 45(11), 2193–2203 (2013)
Reynolds, D.A., Rose, R.C.: Robust text-independent speaker identification using Gaussian mixture speaker models. IEEE Trans. Speech Audio Process. 3(1), 72–83 (1995)
Rodriguez-Martin, D., Samà, A., Perez-Lopez, C., Català, A., Cabestany, J., Rodriguez-Molinero, A.: SVM-based posture identification with a single waist-located triaxial accelerometer. Expert Syst. Appl. 40(18), 7203–7211 (2013)
Torres-Huitzil, C., Nuno-Maganda, M.: Robust smartphone-based human activity recognition using a tri-axial accelerometer. In: 2015 IEEE 6th Latin American Symposium on Circuits Systems, pp. 1–4, February 2015
Turchetti, C., Crippa, P., Pirani, M., Biagetti, G.: Representation of nonlinear random transformations by non-Gaussian stochastic neural networks. IEEE Trans. Neural Networks 19(6), 1033–1060 (2008)
Zhang, Z., Pi, Z., Liu, B.: TROIKA: A general framework for heart rate monitoring using wrist-type photoplethysmographic signals during intensive physical exercise. IEEE Trans. Biomed. Eng. 62(2), 522–531 (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this paper
Cite this paper
Biagetti, G., Crippa, P., Falaschetti, L., Orcioni, S., Turchetti, C. (2018). Human Activity Recognition Using Accelerometer and Photoplethysmographic Signals. In: Czarnowski, I., Howlett, R., Jain, L. (eds) Intelligent Decision Technologies 2017. IDT 2017. Smart Innovation, Systems and Technologies, vol 73. Springer, Cham. https://doi.org/10.1007/978-3-319-59424-8_6
Download citation
DOI: https://doi.org/10.1007/978-3-319-59424-8_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-59423-1
Online ISBN: 978-3-319-59424-8
eBook Packages: EngineeringEngineering (R0)