Visual World Paradigm Data: From Preprocessing to Nonlinear Time-Course Analysis | SpringerLink
Skip to main content

Visual World Paradigm Data: From Preprocessing to Nonlinear Time-Course Analysis

  • Conference paper
  • First Online:
Intelligent Decision Technologies 2017 (IDT 2017)

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 73))

Included in the following conference series:

Abstract

The Visual World Paradigm (VWP) is used to study online spoken language processing and produces time-series data. The data present challenges for analysis and they require significant preprocessing and are by nature nonlinear. Here, we discuss VWPre, a new tool for data preprocessing, and generalized additive mixed modeling (GAMM), a relatively new approach for nonlinear time-series analysis (using mgcv and itsadug), which are all available in R. An example application of GAMM using preprocessed data is provided to illustrate its advantages in addressing the issues inherent to other methods, allowing researchers to more fully understand and interpret VWP data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 21449
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 21449
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cooper, R.M.: The control of eye fixation by the meaning of spoken language: a new methodology for the real-time investigation of speech perception, memory, and language processing. Cogn. Psychol. 6, 84–107 (1974)

    Article  Google Scholar 

  2. Huettig, F., Rommers, J., Meyer, A.S.: Using the visual world paradigm to study language processing: a review and critical evaluation. Acta Psychol. (Amst)137, 151–171 (2011)

    Article  Google Scholar 

  3. R Development Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna (2016)

    Google Scholar 

  4. Porretta, V., Tucker, B.V., Järvikivi, J.: The influence of gradient foreign accentedness and listener experience on word recognition. J. Phonetics 58, 1–21 (2016)

    Article  Google Scholar 

  5. Porretta, V., Kyröläinen, A.-J., van Rij, J., Järvikivi, J.: VWPre: tools for preprocessing visual world data (2016)

    Google Scholar 

  6. Wood, S.N.: mgcv: mixed GAM computation vehicle with GCV/AIC/REML smoothness estimation (2016)

    Google Scholar 

  7. van Rij, J., Wieling, M., Baayen, R.H., van Rijn, H.: itsadug: interpreting time series and autocorrelated data using GAMMs (2015)

    Google Scholar 

  8. Tanenhaus, M.K., Spivey-Knowlton, M.J., Eberhard, K.M., Sedivy, J.E.: Integration of visual and linguistic information in spoken language comprehension. Science 268, 1632–1634 (1995)

    Article  Google Scholar 

  9. Nixon, J.S., van Rij, J., Mok, P., Baayen, R.H., Chen, Y.: The temporal dynamics of perceptual uncertainty: eye movement evidence from Cantonese segment and tone perception. J. Mem. Lang. 90, 103–125 (2016)

    Article  Google Scholar 

  10. Allopenna, P.D., Magnuson, J.S., Tanenhaus, M.K.: Tracking the time course of spoken word recognition using eye movements: evidence for continuous mapping models. J. Mem. Lang. 38, 419–439 (1998)

    Article  Google Scholar 

  11. Chambers, C.G., Tanenhaus, M.K., Magnuson, J.S.: Actions and affordances in syntactic ambiguity resolution. J. Exp. Psychol. Learn. Mem. Cogn. 30, 687–696 (2004)

    Article  Google Scholar 

  12. van Rij, J., Hollebrandse, B., Hendriks, P.: Children’s eye gaze reveals their use of discourse context in object pronoun resolution. In: Holler, A., Goeb, C., Suckow, K. (eds.) Empirical Perspectives on Anaphora Resolution. De Gruyter, Berlin (2016)

    Google Scholar 

  13. Kamide, Y., Altmann, G.T.M., Haywood, S.L.: The time-course of prediction in incremental sentence processing: evidence from anticipatory eye movements. J. Mem. Lang. 49, 133–156 (2003)

    Article  Google Scholar 

  14. Järvikivi, J., Pyykkönen-Klauck, P., Schimke, S., Colonna, S., Hemforth, B.: Information structure cues for 4-year-olds and adults: tracking eye movements to visually presented anaphoric referents. Lang. Cogn. Neurosci. 29, 877–892 (2014)

    Article  Google Scholar 

  15. Dussias, P.E., Valdés Kroff, J., Gerfen, C.: Using the visual world to study spoken language processing. In: Jegerski, J., Van Patten, B. (eds.) Research Methods in Second Language Psycholinguistics, pp. 93–126. Routledge, New York (2014)

    Google Scholar 

  16. Baayen, R.H., van Rij, J., Cecile, D., Wood, S.N.: Autocorrelated errors in experimental data in the language sciences: some solutions offered by generalized additive mixed models. In: Speelman, D., Heylan, K., Geeraerts, D. (eds.) Mixed Effects Regression Models in Linguistics. Springer, Berlin (2016)

    Google Scholar 

  17. Hastie, T.J., Tibshirani, R.J.: Generalized Additive Models. Chapman & Hall/CRC, London (1990)

    MATH  Google Scholar 

  18. Wood, S.N.: Generalized Additive Models: An Introduction with R. Chapman & Hall/CRC Press, Boca Raton (2006)

    MATH  Google Scholar 

  19. Baayen, R.H., Davidson, D.J., Bates, D.M.: Mixed-effects modeling with crossed random effects for subjects and items. J. Mem. Lang. 59, 390–412 (2008)

    Article  Google Scholar 

  20. Mirman, D., Dixon, J.A., Magnuson, J.S.: Statistical and computational models of the visual world paradigm: Growth curves and individual differences. J. Mem. Lang. 59, 475–494 (2008)

    Article  Google Scholar 

  21. Barr, D.J.: Analyzing “visual world” eyetracking data using multilevel logistic regression. J. Mem. Lang. 59, 457–474 (2008)

    Article  Google Scholar 

  22. Fischer, B.: Saccadic reaction time: Implications for reading, dyslexia, and visual cognition. In: Rayner, K. (ed.) Eye Movements and Visual Cognition, pp. 31–45. Springer, New York (1992)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Porretta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Porretta, V., Kyröläinen, AJ., van Rij, J., Järvikivi, J. (2018). Visual World Paradigm Data: From Preprocessing to Nonlinear Time-Course Analysis. In: Czarnowski, I., Howlett, R., Jain, L. (eds) Intelligent Decision Technologies 2017. IDT 2017. Smart Innovation, Systems and Technologies, vol 73. Springer, Cham. https://doi.org/10.1007/978-3-319-59424-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59424-8_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59423-1

  • Online ISBN: 978-3-319-59424-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics